DOI: 10.52150/2522-9117-2022-36-254-264

Pliuta Valerii Leonidovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-6564-7866

Levchenko Gennady Vasilyevich, D. Sc. (Tech.), Professor, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-1173-5320

Vorobey Serhii Oleksandrovych, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-0119-3935

Nesterenko Anatolii Mykhailovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-1644-5472. E-mail: anatnest1946@gmail.com

STRUCTURE AND PROPERTIES OF REINFORCING ROLLED COILS BY V-ALLOYED DUAL-AND MULTI-PHASE C-MN-SI-STEEL

Summary. The aim of the work was to study the influence of vanadium doping on two- and multi-phase steels. The schemes of thermomechanically controlled rolling on the wire line of the sectional rolling mill 400/200 for the production of reinforcing wire with a diameter of 6.0 mm in rolls were studied. For the production of reinforcing wire, vanadium alloyed C – Mn – Si steels, which have two-phase (DP – ferritic-martensitic (bainite)) and multi-phase (MP – ferritic-martensitic (bainite) – pearlitic) microstructures, were used. During thermomechanical controlled rolling, TMCR charts were used, including TLH stacking head temperatures of 1024°C to 1063°C. It was established that the applied rolling modes ensure the formation of the MP microstructure. In this 6.0 mm wire, high tensile strength and ductility indicators were achieved in the bends(YS0.2 = 530-550 MPa; TS = 785-885 MPa; El5 = 15.0 – 29.0 %), which fully corresponded specification requirements of national standards such as ASTM A 615 (USA), JIS G 3112 (Japan) and KSD 3504 (Republic of Korea).

Keywords: thermomechanical controlled rolling, wire line, reinforcing wire in bays, V-microalloyed C-Mn-Si-steel, microstructure.

DOI: https://doi.org/10.52150/2522-9117-2022-36-254-264

For citation: Pliuta V. L., Levchenko G. V., Vorobey S. O., Nesterenko A. M. Structure and properties of reinforcing rolled coils by v-alloyed dual-and multi-phase C-Mn-Si-steel. Fundamental and applied problems of ferrous metallurgy. 2022. Collection 36. P. 254-264. (In English). https://doi.org/10.52150/2522-9117-2022-36-254-264.

References

  1. Lis, J., Lis,, & Kolan, C. (2004). Dual-phase technology and properties of C-Mn steels. Inzynieria Materiaiowa, 25(3), 163-165.
  2. Zuo,, & Zhou, Z. (2015). Study of pipeline steels with acicular ferrite microstructure and ferrite-bainite dual-phase microstructure. Materials Research, 18(1), 36-41. https://doi.org/10.1590/1516-1439.256813
  3. Sychkov, B., Zhigarev, M. A., & Perchatkin, A. V. (2006). Manufacture of reinforcing steel rolled products for wide applications. Technological peculiarities, Magnitogorsk, Publishing House of Nosov Magnitogorsk State Technical University, p. 499
  4. Sychkov, B., Sheksheev, M. A., Malashkin, S. O., & Kamalova, G. Y. (2016). In-line heat treatment of long products and sections. Treatment of solid and sandwiched materials, (2), 5-24
  5. Xu, X. J., & Kong, J. Q. (2012). Study on Cooling Process of Hot Rolled Wire Rod with Dual Phase Microstructure. Advanced Materials Research, 415-417, 779-783. https://doi.org/10.4028/www.scientific.net/AMR.415-417.779
  6. Lorusso,, Burgueno, A., Egidi, D., & Svoboda, H. (2012). Application of dual phase steels in wires for reinforcement of concrete structures. Procedia Materials Science, 1, 118-125. https://doi.org/10.1016/j.mspro.2012.06.016
  7. Wire Enforcement Institute (WRI). (2014). Historical Data on Wire, Triangular Wire Fabric/Mesh and Welded Wire Concrete Reinforcement (WWR)
  8. Goldshtain, I., Grachev, S. V., & Veksler, G. M. (1985). Special steels. Metallurgy
  9. Parusov, V., Sychkov, A. B., Zhigarev, M. A., & Perchatkin, A. V. (2004). Wire rod of boron-bearing low-carbon steel for direct deep drawing. Metallurgist, 48(11), 626-634. https://doi.org/10.1007/s11015-005-0038-6
  10. Parusov, V. V., Sychkov, A. B., & Parusov, E. V. (2012). Theoretical and technological basics for the production of high performance steel wire rod. ART-PRESS
  11. Parusov, V. V., Sychkov, A. B., Derevyanchenko, I. V., & Zhigarev, M. A. (2005). New application of boron in metallurgy. Bulletin of Nosov Magnitogorsk State Technical University, 1(9), 15-17.
  12. Sychkov, B., Parusov, V. V., Nesterenko, A. M., Zhukova, Y. S., Zhigarev, M. A., Perchatkin, A. V., & Chuyko, I. N. (2009). Structure and properties of wire rod for electrodes and welding wire. Bendery, Poligraphist
  13. Novikov,, & Heinbuker, B. (2001). Physics: Toronto/Vancouver. Canada, Irvin Publishing.
  14. Popov, A., & Popova, L. E. (1961). Heat treater’s guide. Isothermal and CCT-diagrams of the decomposition of overcooled austenite. Mashgiz.
  15. Popova, L. V., & Popov, A. A. (1991). Phase transformation diagrams of Austenite and Beta-solution of titanium alloys.

Фундаментальные и прикладные проблемы черной металлургии
Logo