DOI: 10.52150/2522-9117-2021-35-263-274

Nadtochii Anzhela Anatoliivna, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-5077-0562. Е-mail: office.isi@nas.gov.ua

Stepanenko Dmytro Oleksandrovych, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-0184-8295

Khodotova Natalia Evstakhivna, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-6958-4636

Kyrychok Vladyslav Serhiiovych, Post-graduate student, Ukrainian State University of Science and Technology, Gagarina Avenue, 4, Dnipro, 49600

THERMODYNAMIC MODELING OF BEHAVIOR OF COMPONENTS IN SLAG SYSTEMS CHARACTERISTIC IN THE MANUFACTURE  OF MANGANESE FERROAL ALLOYS

Summary. The aim of the study is to find highly efficient schemes for the use of secondary raw materials and waste-free technologies that will return valuable chemical elements to the metallurgical redistribution, primarily manganese. This problem cannot be solved without a theoretical substantiation of physicochemical conditions, the creation of which will allow to achieve a fuller use of the potential of the useful properties of the studied materials. Analysis of the main physicochemical properties of manganese-containing materials, in particular ferroalloy slags, will allow to obtain the initial data and intervals of values of parameters necessary for further research on the development of an effective technology for processing manganese slags. Thermodynamic equilibrium calculations in the system Mn-Si-Ca-Al-Mg-O show that the increase in the amount of free manganese oxide is associated with a certain value of basicity, the achievement of which provides the predominant binding of silica to calcium silicates. The increased content of MgO oxide increases the amount of free oxides of silicon and manganese. The ratio of oxides in the system affects the viscosity and crystallization characteristics of this system. The degree of reduction of oxides is determined by the activities of the components of the slag phase, which depends on its chemical composition and temperature. Calculation of activities in the system based on manganese oxide showed that increasing the basicity, and magnesium oxide content in the system increases the activity of manganese oxide and the addition of aluminіum oxide – decreases, which coincides with the data obtained by calculating the equilibrium phase distribution. The analysis of the data obtained in the calculation of the activities of components in a complex slag system based on manganese oxide justifies the feasibility of reprocessing metallurgical manganese slag, which will return manganese to the metallurgical redistribution.

Keywords: manganese-containing slag, thermodynamics, phase distribution, basicity, viscosity, activity.

For citation: Nadtochii A.A., Stepanenko D.O., Khodotova N.E., Kyrychok V.S. Termodynamichne modelyuvannya povedinky skladovykh u shlakovykh systemakh, shcho kharakterni pry vyrobnytstvi marhantsevykh ferosplaviv [Thermodynamic modeling of behavior of components in slag systems characteristic in the manufacture of manganese ferroal alloys]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 263-274. (In Ukrainian).

DOI: 10.52150/2522-9117-2021-35-263-274

References

  1. Koloskov M.M., Kashirskiy YU.V. et al. (2007). Marochnik staley i splavov [Grade of steels and alloys]. A.C. Zubchenko (Еd.). 2nd ed. Moskva: 2007, 784 p. [In Russian].
  2. Vegman Ye.F., Zherebin B.N., Pokhvisnev A.N. et al. (2004). Metallurgiya chuguna [Metallurgy of pig iron]S. Yusfin (Ed.). 3rd ed. Moskva: IKTS “Akademkniga” [M .: ICC “Akademkniga” ]. 2004. 774 p. [In Russian].
  3. Ayzatulov R.S., Kharlashin P.S., Protopopov Ye.V., Nazyuta L.YU. (2002). Teoreticheskiye osnovy staleplavil’nykh protsessov [Theoretical foundations of steel-making processes]. Moskva: MISiS. 2002. 319 p. [In Russian].
  4. Velychko O.H., Boychenko B.M., Stoyanov O.M. (2009). Tekhnolohiyi pidvyshchennya yakosti stali [Technologies for improving the quality of steel]. Dnipropetrovsk: Systemni tekhnolohiyi. 2009, 234 p. [In Russian].
  5. Gasik M.I., Lyakishev N.P., Yemlin B.I. (1988). Teoriya i tekhnologiya proizvodstva ferrosplavov [Theory and technology of ferroalloys production]. Moskva: Metallurgiya. 1988, 784 p. [In Russian].
  6. Kaplunova Ye.A. (1991). Rynok marganetssoderzhashchikh ferrosplavov [The market for manganese-containing ferroalloys]. delovoy i kommercheskoy informatsii. Vestnik AO Birzha metallov” [Bul. business and commercial information. Bulletin of JSC “Metal Exchange”]. 1991, 6, 14-19. [In Russian].
  7. Vtorichnyye material’nyye resursy chernoy metallurgii. (1986). [Secondary material resources of ferrous metallurgy]. (Vols. 1-2). Moskva: Ekonomika. 1986, 344 p. [In Russian].
  8. Sittig M. (1985). Izvlecheniye metallov i neorganicheskikh soyedineniy iz otkhodov [Extraction of metals and inorganic compounds from waste]M. Emanuel (Ed.). Moskva: Metallurgiya. 1985, 408 p. [In Russian].
  9. Gimmel’farb A.N., Kotov K.I. (1982). Protsessy vosstanovleniya i shlakoobrazovaniya v domennykh shlakakh [Processes of recovery and slag formation in blast-furnace slags]. Moskva: Metallurgiya. 1982, 340 p. [In Russian].
  10. Kucher A.G., Mironenko P.F. (1977). Vosstanovitel’nyye protsessy v proizvodstve ferrosplavov [Restoration processes in the production of ferroalloys]. Moskva: Nauka. 1977, 71-74. [In Russian]
  11. Chuychenko A.A., Sheremet L.V. (1980). Proizvodstvo ferrosplavov [Ferroalloy production]. Moskva: Metallurgiya. 1980. 160 p. [In Russian].
  12. Dekhanov N.M., Aleksandrov A.P., Novikov A.S. (1978). Povysheniye effektivnosti proizvodstva i uluchsheniya kachestva elektroferrosplavov [Increasing production efficiency and improving the quality of electroferroalloys]. Dnepropetrovsk. 1978, 75-76. [In Russian].
  13. Panfilov M.I., Shkol’nik YA.SH., Orininskiy N.V., Kolomyets V.A., Sorokyn YU.V., Hrabeklys A.A. (1987). Pererabotka shlakov i bezotkhodnaya tekhnologiya v metallurgii [Slag processing and waste-free technology in metallurgy]. Moskva: Metallurgiya. 1987, 238 p. [In Russian].
  14. Litvinenko D.F., Bobkova O.S., Rupov M.A. (1978). Sovershenstvovaniye tekhnologii proizvodstva margantsevykh splavov [Improvement of manganese alloys production technology]. Tbilisi: Metsniyereba [Tbilisi: Metsniereba]. 1978, 171-173. [In Russian].
  15. Rakitina N.I., Turkina N.A., Morozov A.A. et al. (1983). Issledovaniye vyazkosti peredel’nogo shlaka besflyusovoy plavki uglerodistogo ferromargantsa [Investigation of the viscosity of conversion slag of flux-free smelting of carbon ferromanganese]. N. Laskorin (Ed.). Fizikokhimiya i metallurgiya margantsa [Physicochemistry and metallurgy of manganese]. Moskva: Nauka. 1983, 16–20. [In Russian].
  16. Kozheurov V.A. (1965). Termodinamika metallurgicheskikh shlakov [Thermodynamics of metallurgical slags]. Sverdlovsk: Metallurgiya. 1965, 163 p. [In Russian].
  17. Gerasimov A.V. (1990). Ekonomicheskaya otsenka resursosberegayushchikh tekhnologiy (na primere ispol’zovaniya margantsa) [Economic assessment of resource-saving technologies (on the example of the use of manganese)]. Extended abstract of candidate’s thesis. 1990, 22 p. [In Russian].

Фундаментальные и прикладные проблемы черной металлургии
Logo