DOI: 10.52150/2522-9117-2021-35-186-199

Petrov Aleksandr Pylypovych, Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-7855-9267. Е-mail: alex.f.petrov@gmail.com

Snigura Iryna Romanivna, Сandidate of technical sciences, Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0001-5872-7403

Golovko Liudmyla Andriivna, Candidate of chemical sciences, Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-3872-5950

Hodotova Natalia Yevstakhivna, Junior Researcher, ORCID 0000-0002-6958-4636

MODEL PREDICTION OF PHYSICO-CHEMICAL AND THERMOPHYSICAL CHARACTERISTICS OF NEW TYPES OF MANGANESE-CONTAINING (Mn-50-60%) FERROALLOYS

Abstract. The aim of the work is to implement a new approach to the description of physicochemical and thermophysical characteristics of low-melting manganese-containing ferroalloys (in the range of concentrations of Mn 50-60%, Si 3-8%, C 2.5-6%) during deoxidation and alloying of metal melt. The proposed approach is focused on the development of methods and criteria for the quantitative assessment and accounting of microhomogeneity of multicomponent metal melts, which include ferroalloys. This approach makes it possible to predict such important characteristics as melting temperature, density, heat capacity, heat of fusion, thermal conductivity, resistivity, temperature coefficient, which will expand the understanding of melting processes and assimilation of ferroalloy elements. The method of solving regularity modeling problems developed at the Iron and Steel Institute of the National Academy of Sciences of Ukraine, which is based on the original concept of directed chemical bonding of interaction processes in melts and solutions, developed by E.V. Prikhodko. To assess and take into account the influence of microhomogeneity of the structure of metal melts of ferroalloy production, the method of calculating criteria (ΔZY and Δd), which characterize the degree of difference between electronic and structural state of the melt (as a chemically unified system) from the mechanical mixture of their initial components. Using these criteria and the available experimental data, which acted as reference points, the calculated values of the consumer properties of manganese-containing ferroalloys, which differ from standard brands in the direction of increasing the silicon content and decreasing manganese. On the basis of new results of calculation of a complex of physical and thermophysical properties the estimation of efficiency of use of ferroalloys is carried out. The fundamental possibility of graphical dependences “property-parameter” to determine the boundary conditions for choosing the optimal composition of new types of ferroalloys, purposefully control the physicochemical state of the iron-carbon melt and, accordingly, to influence the properties of the finished metal.

Keywords: manganese-containing ferroalloys, metal melts, parameters of interatomic interaction, analytical dependences.

For citation: Petrov A.F., Snigura I.R., Golovko L.A., Khodotova N.E. Modelne prohnozuvannya fizyko-khimichnykh i teplofizychnykh kharakterystyk novykh vydiv marhantsevmisnykh (Mn-50-60%) ferosplaviv [Model prediction of physico-chemical and thermophysical characteristics of new types of manganese-containing (Mn-50-60%) ferroalloys]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 186-199. (In Ukrainian).

DOI 10.52150/2522-9117-2021-35-186-199

References

  1. Zhuchkov V.I., Smirnov L.A., Zayko V.P., Voronov YU.I. (2007). Tekhnologiya margantsevykh ferrosplavov. Ch.1. Vysokouglerodistyy ferromarganets [Manganese ferroalloy technology. Part 1. High-carbon ferromanganese]. Yekaterinburg: NISOUrO RAN. 2007, 410 p. [In Russian].
  2. Mysik V.F., Zhdanov A.V., Pavlov V.A. (2018). Metallurgiya ferrosplavov: tekhnologicheskiye raschety: uchebnoye posobiye [Metallurgy of ferroalloys: technological calculations: textbook]. Yekaterinburg: Izd-vo Ural un-ta. 2018, 536 p. [In Russian].
  3. Olshansky V.I., Filippov I.Yu., Gladkikh V.A., Ruban A.V., Dmitriyeva I.S., Tsibulya Ye.I. (2015). Vliyaniye sostava ferrosilikomargantsa na yego kachestvo i tekhnologicheskiye pokazateli protsessa [Influence of the composition of ferrosilicomanganese on its quality and technological indicators of the process]. Metallurgicheskaya i gornorudnaya promyshlennost’. [Metallurgical and mining industry], 2015, 1, 36-41 [In Russian].
  4. Yedneral F.P. (1963). Elektrometallurgiya stali i ferrosplavov [Electrometallurgy of steel and ferroalloys]. Moskva: Metallurgiya. 1963, 640 p. [In Russian]
  5. Ignat’yev V.S., Vikhlevshchuk V.A., Chernogretskiy V.M. (1988). Izucheniye svoystv ferrosplavov i ligatur dlya mikrolegirovaniya i raskisleniya stali [Study of the properties of ferroalloys and master alloys for microalloying and deoxidation of steel]. VUZov. Chernaya metallurgiya [Izv. Universities. Ferrous metallurgy], 1988, 6, 37-42. [In Russian].
  6. Zhuchkov V.I., Zav’yalov A.L., Noskov A.S. (1994) Fiziko-khimicheskiye kharakteristiki margantsevykh ferrosplavov [Physicochemical characteristics of manganese ferroalloys]. VUZov. Chernaya metallurgiya [Izv. Universities. Ferrous metallurgy], 1994, 10, 9-10 [In Russian].
  7. Durer P., Fol’kert G. (1976). Metallurgiya ferrosplavov [Metallurgy of ferroalloys]. Moskva: Metallurgiya. 1976, 480 p. [In Russian].
  8. Mizin V.G., Chirkov N.A., Ignat’yev V.S., Akhmanayev S.I., Povolotskiy V.D. (1992). Spravochnoye izdaniye [Ferroalloys. Reference edition]. Moskva: Metallurgiya. 1992, 415 p. [In Russian]
  9. Prikhod’ko E.V., Petrov A.F. (1998). Fiziko-khimicheskiye kriterii dlya otsenki stepeni mikroneodnorodnosti metallicheskikh rasplavov [Physicochemical criteria for assessing the degree of microheterogeneity of metal melts]. Metallofizika i noveyshiye tekhnologii [Metallophysics and Advanced Technologies], 1998, Vol. 20, 7, 64-74 [In Russian].
  10. Prikhod’ko E.V., Petrov A.F. (1995). Rol’ napravlennogo mezhatomnogo vzaimodeystviya v formirovanii mikroneodnorodnogo stroyeniya metallicheskikh rasplavov [The role of directed interatomic interaction in the formation of the microheterogeneous structure of metal melts]. vuzov. Chernaya metallurgiya [Izv. universities. Ferrous metallurgy], 1995, 12, 5-12 [In Russian].
  11. Prikhod’ko E.V., Petrov A.F. (2008). Metodika prognozirovaniya fizicheskikh i teplofizicheskikh svoystv margantsevykh ferrosplavov v zavisimosti ot sostava [Methodology for predicting the physical and thermophysical properties of manganese ferroalloys depending on the composition]. Metallurgicheskaya i gornorudnaya promyshlennost’ [Metallurgical and mining industry], 2008, 6, 27-30. [In Russian].
  12. Velichko B.F., Kazachkov I.P., Rogachev I.P., Ovcharuk A.N., Gantserovskiy O.G., Ol’shanskiy V.I. et al. (2016). Issledovaniye i razrabotka legkoplavkikh margantsevykh ferrosplavov, tekhnologii ikh vyplavki i primeneniya v staleplavil’nom proizvodstve [Research and development of low-melting manganese ferroalloys, technologies for their smelting and application in steelmaking]. Suchasní problemi metalurgíí [Current problems of metallurgy], 2016, Vol. 19, 1, 77-86. [In Russian].

Фундаментальные и прикладные проблемы черной металлургии
Logo