DOI: 10.52150/2522-9117-2020-34-229-246
Babachenko Alexander Ivanovich, Dr. Sci., (Engin.), Senior Research Scientist, Director, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: a_babachenko@i.ua, ORCID 0000-0003-4710-0343
Dyomina Kateryna Hennadiivna, PhD (Engin.), Senior Researcher,, Iron and Steel Institute named after Z.I. Nekrasovof the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: katya20@ua.fm, ORCID 0000-0001-9668-8169
Kononenko Anna Andreevna, PhD (Engin.), Senior Researcher, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: perlit@ua.fm, a_kononenko@inbox.ru ORCID 0000-0001-7446-4105; ORCID 0000-0001-7446-4105
Dementieva Zhanna Andriivna, Researcher, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107
Safronova Elena Anatolievna, engineer, Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; ORCID 0000-0002-4032-4275
Research of the effect of the cooling rate during solidification of a continuously cast billet on the features of the dendritic structure of carbon steel
Summary. The analysis of the formation process of the cast structure of carbon steel grade EA1N (EN 13261: 2009 + A1: 2010 (Е)) after the completion of its crystallization with a change in a wide range of metal cooling rate during solidification of a continuously cast billet (ССB) with a diameter of 470 mm has been carried out. The effect of the cooling rate during the solidification of ССB Ø 470 mm on the parameters of the chemical heterogeneity of the distribution of silicon and manganese in the microstructure of carbon steel has been shown. It has been determined that the effect of the metal cooling rate during the solidification of the investigated CCB on the size of dendritic crystals is described by the inversely proportional relationship: у = 510,85 х-0,156. With a change in the cooling rate of the metal during solidification from 106 до 1 ℃ / min, the size of the dendrites in the direction from the surface to the central layers of the CCB Ø 470 mm increased by ~ 8 times, and the density of the dendritic structure of carbon steel EA1N decreases by 64 times. In this case, the nature of its dependence on the intensity of heat removal is the opposite nature of the change in the size of dendrites. It has been established that by varying the cooling rate in the range 1 – 106 ℃ / min, one can achieve a significant change in the average size and density of dendritic crystals while maintaining the constancy of the volume fraction of segregation areas of silicon and manganese ~ 23% in carbon steel (~ 0.4 % wt. C). The results of X-ray spectral analysis of samples of ССB Ø 470 mm made of carbon steel grade EA1N showed that the maximum content of silicon and manganese is characteristic of the former spaces between the first-order dendritic branches, their minimum content is for the former dendritic branches. At the same time, the amount of these elements in steel microvolumes, which are the former spaces between the second-order dendritic branches, is on average 50 % more than in the former dendritic branches. It has been determined that in the entire investigated range of cooling rates 1 – 106 ℃ / min, the coefficients of dendritic segregation КдI and КдII of silicon and manganese change insignificantly and amount to 1.8-1.9 and 1.5 for КдI and КдII, respectively. In this case, the values of the coefficients КдI and КдII for both elements are practically constant in both pearlite and ferrite. It has been proven that both silicon and manganese have high diffusion mobility only at sufficiently high temperatures, when steel is in a solid-liquid state. Based on the results of X-ray microanalysis, it has been established that the heterogeneity of the distribution of chemical elements, which is formed as a result of dendritic segregation of silicon and manganese, is the primary and constant component of the microstructure of carbon steel.
Keywords: carbon steel, dendritic structure, liquation, continuously cast billet
Reference
Chalmers B. Teoriya zatverdevaniya [Principles of Solidification] / B. Chalmers. – Moscow: Metallurgiya, 1968. – 287 p. [in Russian].
Flemings M. Processy` zatverdevaniya [Solidification Processing] / M. Fleming. – Moscow: Mir, 1977. – 423 p. [in Russian].
Golikov I.N. Dendritnaya likvaciya v stalyax i splavax [Dendritic segregation in steels and alloys] / I.N. Golikov, O.B. Maslenkov. – Moscow: Metallurgiya, 1977. – 224 p. [in Russian].
Won Y.-M., Thomas B.S. Simple Model of Microsegregation during Solidification of Steels / Y.-M. Won, V.S. Thomas // Metallurgical and Material Transactions. – 2001. – Vol. 32A, July. – pp. 1755 – 1767. [in English]. https://doi.org/10.1007/s11661-001-0152-4
Papapetrou A. Untersuchungen über dendritisches Wachstum von Kristallen / A. Papapetrou // Zeitschrift für Kristallographie. – 1935. – Vol. 92: Issue 1 (Dec.). – S. 89-129. [in German]. https://doi.org/10.1524/zkri.1935.92.1.89
Malinochka Ya.N., Duxin A.I., Rusin E.N. Vliyanie skorosti oxlazhdeniya i pereoxlazhdeniya rasplava na razvetvlennost` obrazuyushhixsya dendritov / Ya.N. Malinochka, A.I. Duxin, E.N. Rusin // Chyornaya metallurgiya. Nauka-texnologiya-proizvodstvo. – Moscow: Metallurgiya, 1970. – Vip. 38. – pp. 131 – 135. [in Russian].
Kondratyuk S.Ye., Stoyanova O.M. Strukturoutvorennya stalі v zalezhnostі vіd umov krystalіzaczіi vylyvkіv / S.Ye. Kondratyuk, O.M. Stoyanova // Metaloznavstvo ta obrobka metalіv. – 1999. – №1-2. – pp. 3 – 10. [in Ukrainian].
Shalin R.E. Monokristally` nikelevy`x zharoprochny`x splavov [Single-crystals of nickel heat-resistant alloys] / R.E. Shalin, I.L. Svetlov, E.B. Kachanov V.N. Toloraiya, O.S. Gavrilin. – Moscow: Mashinostroenie, 1977. – 332 p. [in Russian].
Grankin S.S. Issledovanie gradienta temperatury` na fronte kristallizacii monokristallov Ni-W-splavov / S.S. Grankin, V.Ya. Sverdlov // Voprosy` atomnoj nauki i texniki. Seriya: Vakuum, chisty`e materialy`, sverxprovodniki (17). – 2008. – №1. – pp. 162 – 165. [in Russian].
Smirnov A.N. Processy neprery`vnoj razlivki [Сontinious casting processes] / A.N. Smirnov, V.L. Pilyushenko, A.A. Minaev, S.V. Molot, Yu.N. Belobrov. – Donetsk: DonNTU, 2002. – 536 p. [in Russian].
EN 13261:2009 + A1:2010 (E) (Evropejskij standart. Anglijskaya versiya). Rel`sovyj transport. Kolyosnye pary i telezhki. Osi. Trebovaniya k izdeliyu [Railway applications. Wheelsets and bogies. Axles. Product requirements]. – Valid from 2010-10-01. – 55 p. [in Russian].
Sovershenstvovanie skvoznoy tehnologii proizvodstva zheleznodorozhny`h osey iz neprery`vnolitoy zagotovki stali marki F [Improvement of the end-to-end technology for production of railway axles made of continuously cast billets of steel grade F] / Ltd «MZ «DNEPROSTAL», PJSC «INTERPIPE NTZ, Ltd «INTERPIPE Ukraina»; [managers: A Mik”elan, I.V. Donskoy, Yu.V. Klimchik]. – Dnepr, 2018. – 77 p. [in Russian].
Salty`kov S.A. Stereometricheskaya metallografiya [[Stereometric metallography] / S.A. Salty`kov – Moscow: Metallurgiya, 1976. – 271 p. [in Russian].
Dyomina E.G. Analiz prorabaty`vaemosti struktury` stali 09G2S v processe goryachej prokatki neprery`vnolitoj zagotovki / E.G. Dyomina, Zh.A. Dement`eva, A.S. Mirgorodskaya, D.V. Gunchenko // Nauka і metalurgіya. Elektronne vidannya zbіrky naukovyx pracz`. – Dnіpro, 2018. – Vyp. 2. – pp. 4 – 18. [in Russian].
Radius atoma, spravochnaya tablicza [e`lektronny`j resurs]. Formuly` i raschyoty` online f (x, y, z).ru. Rezhim dostupa: https://www.fxyz/справочные_данные/свойства_атомов_веществ/радиусы _атомов_элементов/. [in Russian].
Oikawa H. Review on lattice diffusion of substitutional impurities in iron. A summary report / Hiroshi Oikawa // Technol. Rep. Tohoku Univ. – 1982. – Vol. 47. – No. 2. – pp. 215 – 224. [in English].