DOI: 10.52150/2522-9117-2020-34-202-218

Parusov Eduard Vladimirovich, PhD (Engin.), Senior Researcher, Head of Department; Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: tometal@ukr.net,  ORCID 0000-0002-4560-2043

Chuyko Igor Mikolayovich, PhD (Engin.), SeniorResearch Scientist, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: ferrosplav@ukr.net,  ichuyko@mail.ru ORCID 0000-0002-4753-614X

Lutsenko Vladislav Anatoliyovych, Dr. Sci. (Engin.), Leading Researcher, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: lutsenkovlad2@gmail.com,  ORCID 0000-0002-4604-5592; ORCID 0000-0002-4604-5592

Parusov O.V., PhD (Engin.), Senior Researcher, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: tometal@ukr.net,  ORCID 0000-0002-9879-6179

Golubenko Tatyana Nikolaevna, PhD (Engin.), Senior Researcher, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine,49107; e-mail: sumer@i.ua,  ORCID 0000-0002-3583-211X

Lutsenko Olga Vladislavivna, PhD (Engin.), Research Scientist, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: olya.lutsenko2009@yandex.ru, ORCID 0000-0001-8298-5306

Sivak Alla Ivanovna, Researcher, Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; ORCID 0000-0001-6948-7732

Influence of thermal strengthening technology on variability of mechanical properties of rolled metal product

Summary. Rebars and coiled bar have a tendency to softening over time. After holding at the room temperature the ductility of the rolled products can be partially restored due to the processes of return and relaxation and also deposition of the diffusion-movable hydrogen from the steel. The reverse hydrogen brittleness and ageing are often observed, during production of the thermally strengthening rolled products. The variability of the mechanical properties of rebars and coiled bar of 25G2S, С70D and С82D steels with different diameters has been studied. It has been shown that tendency to softening is decreases during increasing of the strength class of the rebars (steel 25G2S) and it is related to deposition of the hydrogen in different quantities. Dynamics of increase of specific elongation for rebars turns out to be maximum in the first 30 days and growing rapidly (till 4,0…4,5 % abs.) over 90…120 days, then stabilizes and practically does not change over time. After use of the accelerated cooling at the final stage of the deformation heat treatment of the coiled bar of С70D high carbon steel the variability of specific elongation and reduction of area are characterized by a significant increase of ductility indexes within 3 days after primary testing. By research of variability of mechanical properties of coiled bar of С82D steel was established that during initial testing of samples (immediately after rolling) were recorded a low values of specific elongation and reduction of area (7,6…8,4 % and 15…24 % respectively) and while the progress of embrittlement have a tends to growth with increasing diameter. After holding of the coiled bar within 48…72 hours the parameters of the ductility for all diameters of rolled products are grow to 30…34% and stabilize over time. It has been shown that variability of the mechanical properties have a direct relations with the parameters of the structure, the initial hydrogen content in the steel and with degree of deformation processing of blank continuous casting.
Keywords: rebars, coiled bar, hardness class, mechanical properties, yield strength, specific elongation

Reference

Gulyaev A. P. (1986). Metallovedenie: ucheb. dlya vuzov [Metal science: textbook for universities]. (6-e izd. pererab. i dop). Moskva: Metallurgiya, 1986, 544. [In Russian].

Sokolovskij P. I. (1964). Armaturnye stali [Reinforcing steel]. Moskva: Metallurgiya, 1964, 208. [In Russian].

Baradynceva E. P., Glazunova N. A., Stefanovich S. V. & Rogovcova O.V. (2013). Vliyanie vodoroda na plasticheskie svojstva armaturnogo prokata [Influence of hydrogen on plastic properties of reinforcing bar]. Lite i metallurgiya [Casting and metallurgy], 2013, 3 (72), 179-183. [In Russian].

Kugushin A. A., Uzlov I. G., Kalmykov V.V., Madatyan S. A. & Ivchenko A. V. (1986). Vysokoprochnaya armaturnaya stal [High-strength reinforcing steel]. Moskva: Metallurgiya, 1986, 272. [In Russian].

Kudrin V. A. (2003). Teoriya i tehnologiya proizvodstva stali: ucheb. dlya vuzov [Theory and technology of steel production: textbook for universities]. Moskva: Mir, OOO «Izd-vo AST», 2003, 528. [In Russian].

Kasatkin G. N. (2003). Vodorod v konstrukcionnyh stalyah [Hydrogen in structural steels]. Moskva: Intermet Inzhiniring, 2003, 336. [In Russian].

Gulyaev A. P. & Ilchenko M. M. (1977). Issledovanie i sovershenstvovanie tehnologii proizvodstva armaturnoj stali 23H2G2T [Research and improvement of production technology of reinforcing steel 23H2G2T]. Stal [Steel], 1977, 8, 751–753. [In Russian].

Shapovalov V. I., Antipova N. V. & Trofimenko V. V. et al. (1984). Sposob izgotovleniya stalnyh kolcevyh izdelij [Method of manufacturing steel ring products]. A.S. SSSR № 1102816 ,1984, 26. [In Russian].

Chernenko V. T., Sidorenko O. G., Fedorova I. P., Mironov V. A. & Demchenko Ye. M. (1988). Vodorodnoe ohrupchivanie vysokoprochnoj nizkouglerodistoj kremnemargancovistoj armaturnoj stali [Hydrogen embrittlement of high-strength low-carbon silicon-manganese reinforcing steel]. Stal [Steel], 1988, 6, 85–89. [In Russian].

Sidorenko O. G., Babich V. K. & Fedorova I. P. et al. (1987). Sposob proizvodstva vysokoprochnoj sterzhnevoj armatury [Method for the production of high-strength bar reinforcement]. A.S. SSSR № 1335573, 1987, 33. [In Russian].

Tupilko V. M., Sapiro V. S., Tereshenko V. T. & Alferov K. S. (1971). Vliyanie vodoroda na plasticheskie svojstva vysokoprochnoj armaturnoj stali 80S [Influence of hydrogen on plastic properties of high-strength reinforcing steel 80C] / MiTOM [Metal Science and Heat Treatment], 1971, 2, 64-65. [In Russian].

Tupilko V. M., Zaika V. I., Shved M. M. & Tupilko T. V. (1974). Rol vodoroda v ohrupchivanii armaturnoj stali 35GS, termicheski uprochnennoj s prokatnogo nagreva [Role of hydrogen in embrittlement of reinforcing steel 35GS thermally hardened from rolling heating]. Fiziko-khimicheskaya mekhanika materialov [Physicochemical mechanics of materials], 1974, 4, 47-50. [In Russian].

Sychkov A. B., Parusov E. V., Moller A. B., Tulupov O. N., Sheksheyev M. A., & Stolyarov A. YU. et al. (2017). Tehnologiya termicheskoj obrabotki armaturnogo i fasonnogo prokata v potoke sortovyh stanov (Teoriya i metallurgicheskaya praktika): monografiya [Technology of heat treatment of reinforcing and structural shapes in the flow of long-section mills (Theory and metallurgical practice): monograph]. Germany-Mauritius : Palamarium Academic Publishing, 2017, 261. [In Russian].

Smiyanenko I. N., Babenko,M. A., Shchur V. A., Gunkin I. A., & Kostenko YU. D. (2004). Vliyanie vodoroda na mehanicheskie svojstva gotovogo prokata [Influence of hydrogen on mechanical properties of finished rolling]. Teoriya i praktika metallurgii [Theory and practice of metallurgy], 2004, 3-4, 147-151. [In Russian].

Sychkov A. B. (1995). Sovershenstvovanie tehnologii proizvodstva armaturnogo prokata v buntah [Improvement of the technology of production of reinforcing bars in bundles]. Stal [Steel], 1995, 2, 37-39. [In Russian].

Sychkov A. B., Zhigarev M. A. & Perchatkin A. V. (2005). Termomehanicheski uprochnennyj prokat proizvodstva Moldavskogo metallurgicheskogo zavoda dlya prednapryazhennogo armirovaniya betona [Thermomechanical hardened rolled products of the Moldavian metallurgical plant for prestressed concrete reinforcement]. Sb. nauchnyh trudov Mezhdunarodnoj konferencii po betonu i zhelezobetonu. T. 5. Zhelezobeton v transportnom stroitelstve. Ekologiya. Aspekty primeneniya betona i zhelezobetona. Armatura i svarka. [Collection of scientific papers of the International Conference on Concrete and Reinforced Concrete. Vol. 5. Reinforced concrete in transport construction. Ecology. Aspects of the use of concrete and reinforced concrete. Fittings and welding]. Moskva: Dipol, 2005, 501–509. [In Russian].

Parusov V. V., Belitchenko A. K., Bogdanov N. A., Sychkov A.B., Nesterenko A.M. & Parusov O. V. (2000). Termomehanicheskaya obrabotka prokata iz nepreryvnolitoj zagotovki malogo secheniya [Thermomechanical treatment of rolled products from continuously cast billets of small section]. Zaporozhie: ZGU, 2000, 142. [In Russian].

Zaika V. I., Kashenko Yu. A. & Breharya G. P. (1998). Vodorod v promyshlennyh stalyah [Hydrogen in industrial steels]. Zaporozhie: ZGU, 1998, 192. [In Russian].

Sychkov A. B., Bogdanov N. A., Laskov V. P. & Suhanov A. I. (1992). Sovershenstvovanie processa termouprochneniya armaturnogo prokata [Improvement of the thermo-hardening process of reinforcing bar]. Stal [Steel], 1992, 5, 65-69. [In Russian].

Parusov V. V., Sychkov A. B. & Parusov E. V. (2012). Teoreticheskie i tehnologicheskie osnovy proizvodstva vysokoeffektivnyh vidov katanki [Theoretical and technological foundations for the production of highly efficient types of wire rod]. Dnepropetrovsk : Art-press, 2012, 376. [In Russian].

Фундаментальные и прикладные проблемы черной металлургии
Logo