DOI: 10.52150/2522-9117-2025-39-19

I. M. Liubeka1,*, Head of Production Department, ORCID 0009-0005-2440-5496
K. V. Agarkov1, Crystal Growth Operator, ORCID 0000-0002-3418-3664

1LLC “Crys-Teh”, Kalynova St., 12, office 7, Dnipro, 49051, Ukraine

Corresponding author: i.liubeka@crysteh.com

ACOUSTO-OPTIC DEVICES BASED ON TeO₂ CRYSTALS: SPACE SPECTROMETRY, MEDICINE, AND QUANTUM SYSTEMS. (REVIEW)

Abstract. Tellurium dioxide (TeO₂, paratellurite) remains a key material in photonics thanks to its high acousto-optic figure of merit, birefringence, and wide transparency. Devices based on TeO₂ – modulators, deflectors, and tunable filters – are widely used for beam control, spectral selection, and polarization. This review article examines in detail three major domains where TeO₂-based devices have become critical: space spectrometry, medicine, and quantum technologies. In space exploration, acousto-optic tunable filters (AOTFs) fabricated from TeO₂ are implemented in flagship instruments such as ESA’s NOMAD on ExoMars, NASA’s SuperCam on the Perseverance rover, and China’s Chang’e spectrometers. These instruments enable high-resolution, in spectral analyses of planetary surfaces and atmospheres, providing insights into mineralogy, volatiles, and habitability. In the medical domain, Acousto-optic frequency shifters (AOFS) and fiber-based laser Doppler vibrometers exploit TeO₂ to achieve precise, non-invasive measurements of middle ear ossicle vibrations, offering clinicians a novel diagnostic tool in otology. These systems, benefiting from the safety and versatility of telecom-band radiation, illustrate how AO devices can address unmet clinical needs. The translation of TeO₂-based devices into medicine highlights the interdisciplinary role of acousto-optics, bridging physics, engineering, and healthcare.Quantum technologies represent perhaps the most transformative frontier. Here, TeO₂-based acousto-optic modulators and deflectors are indispensable for photon-level control: fast frequency shifting, phase stabilization, routing, and generation of spatial modes of light. Their ability to integrate into bi-frequency interferometers and multi-channel quantum networks places them at the foundation of the emerging quantum internet, quantum communication protocols, and scalable quantum computing. Overall, such promising application areas require not only scaling up crystal production but also continuous improvement of their quality. The purpose of this review is to demonstrate concrete examples of how TeO₂ devices are applied across such diverse fields, underlining their continued importance for next-generation photonics.

Keywords: tellurium dioxide, acousto-optic devices, acousto-optic tunable filter, acousto-optic modulator, acousto-optic frequency shifters, space spectrometry, quantum communication, quantum interferometry.

For citation: Liubeka, I. M., & Agarkov, K. V. (2025). Acousto-optic devices based on TeO₂ crystals: space spectrometry, medicine, and quantum systems. (Review). Fundamental and applied problems of ferrous metallurgy, 39, 309-324. https://doi.org/10.52150/2522-9117-2025-39-19

References

  1. Babachenko, O. I., Liubeka, I. M., Kononenko, G. A., Podolskyi, R. V., Safronova, O. A. & AgarkovK. V. (2024). Obtaining TeO2 single crystal for acousto-optic applications: raw materials, growth process, and properties. (Review). Fundamental and applied problems of ferrous metallurgy, 38, 542-565. https://doi.org/10.52150/2522-9117-2024-38-542-565
  2. Lim, S., Baek, S., Whitlow, J., D’Onofrio, M., Chen, T., Phiri, S., Crain, S., Brown, K. R., Kim, J., & Kim, J. (2024). Design and characterization of individual addressing optics based on multi-channel acousto-optic modulator for 171Yb⁺ qubits. arXiv:2402.13560
  3. Chen, Y., Li, W., Hyyppä, J., Wang, N., Jiang, C., Meng, F., Tang, L., Puttonen, E., & Li, C. (2021). A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter. Sensors, 19, 1620. https://doi.org/10.3390/s19071620.
  4. Waz, A. T., Masalski, M., & Morawski, K. (2024). Fiber-Based Laser Doppler Vibrometer for Middle Ear Diagnostics. Photonics, 11, 1152. https://doi.org/10.3390/photonics11121152
  5. Radpour, R., Delaney, J. K., & Kakoulli, I. (2022). Acquisition of High Spectral Resolution Diffuse Reflectance Image Cubes (350–2500 nm) from Archaeological Wall Paintings and Other Immovable Heritage Using a Field-Deployable Spatial Scanning Reflectance Spectrometry Hyperspectral System. Sensors, 22, 1915. https://doi.org/10.3390/s22051915.
  6. Braverman, B., Skerjanc, A., Sullivan, N., & Boyd, R. W. (2020). Fast Generation and Detection of Spatial Modes of Light using an Acousto-Optic Modulator. https://doi.org/10.1364/OE.404309
  7. Chang, I. C .(1981). Acousto-Optic tunable filters. Opt. Eng., 20, 824–829. https://doi.org/10.1117/12.7972821
  8. Harris, S. E., & Wallace, R. W. (1969). Acousto-Optic Tunable Filter. J. Opt. Soc. Am., 59, 744–747. https://doi.org/10.1364/JOSA.59.000744
  9. Chang, I. C. (1974). Noncollinear acoustooptic filter with large angular aperture. Appl. Phys. Lett.  25, 370–372. https://doi.org/10.1063/1.1655512
  10. Pustovoit, V. I., & Pozhar, V. E. (1999). Acousto-optic spectrometers for Earth remote sensing. Earth Obs. Syst. 3750, 243–249.
  11. Korablev, O., Bertaux, J.-L., Fedorova, A., Fonteyn, D., Stepanov, A., Kalinnikov, Y., Kiselev, A., Grigoriev, A., Jegoulev, V., Perrier, S., et al. (2006). SPICAM IR acousto-optic spectrometer experiment on Mars Express. J. Geophys. Res., 111. https://doi.org/10.1029/2006JE002696
  12. Li, J., Gui, Y., Xu, R., Zhang, Z., Liu, W., Lv, G., Wang, M., Li, C., & He, Z. (2021). Applications of AOTF Spectrometers in In Situ Lunar Measurements. Materials, 14, 3454. https://doi.org/10.3390/ma14133454
  13. Xu, R., Li, C., Yuan, L., Lv, G., Xu, S., Li, F., Jin, J., Wang, Z., Pan, W., Wang, R., Wang, M., Xie, J., Yang, J., Wang, J., & He, Z. (2022). Lunar Mineralogical Spectrometer on Chang’E-5 Mission. Space Science Reviews, 218(41). https://doi.org/10.1007/s11214-022-00910-6
  14. Neefs, E., Vandaele, A. C., Drummond, R., Thomas, I. R., Berkenbosch, S., Clairquin, R., Delanoye, S., Ristic, B., Maes, J., Bonnewijn, S., Pieck, G., Equeter, E., Depiesse, C., Daerden, F., Van Ransbeeck, E., Nevejans, D., Rodriguez-Gómez, J., López-Moreno, J.-J., Sanz, R., Morales, R., Candini, G. P., Pastor-Morales, M. C., Aparicio del Moral, B., Jeronimo-Zafra, J.-M., Gómez-López, J. M., Alonso-Rodrigo, G., Pérez-Grande, I., Cubas, J., Gomez-Sanjuan, A. M., Navarro-Medina, F., Thibert, T., Patel, M. R., Bellucci, G., De Vos, L., Lesschaeve, S., Van Vooren, N., Moelans, W., Aballea, L., Glorieux, S., Baeke, A., Kendall, D., De Neef, J., Soenen, A., Puech, P.-Y., Ward, J., Jamoye, J.-F., Diez, D., Vicario-Arroyo, A., & Jankowski, M. (2015). NOMAD spectrometer on the ExoMars Trace Gas Orbiter mission: Part 1—Design, manufacturing and testing of the infrared channels. Applied Optics, 54(28), 8494–8520. https://doi.org/10.1364/AO.54.008494
  15. Bertaux, J.L., Fonteyn, D., Korablev, O., Chassefi`ere, E., Dimarellis, E., Dubois, J.P., Hauchecorne, A., Cabane, M., Rannou, P., Levasseur-Regourd, A.C., Cernogora, G., Quemerais, E., Hermans, C., Kockarts, G., Lippens, C., de Maziere, M., Moreau, D., Muller, C., Neefs, B., Simon, P.C., Forget, F., Hourdin, F., Talagrand, O., Moroz, V.I., Rodin, A., Sandel, B., & Stern, A. (2000). The study of the martian atmosphere from top to bottom with SPICAM light on mars express. Planet. Space Sci., 48, 1303–1320. https://doi.org/10.1016/S0032-0633(00)00111-2
  16. Fouchet, T., Reess, J.-M., Montmessin, F., Hassen-Khodja, R., Nguyen-Tuong, N., Humeau, O., Jacquinod, S., Lapauw, L., Parisot, J., Bonafous, M., Bernardi, P., Chapron, F., Jeanneau, A., Collin, C., Zeganadin, D., Nibert, P., Abbaki, S., Montaron, C., Blanchard, C., Arslanyan, V., Achelihi, O., Colon, C., Royer, C., Hamm, V., Beuzit, M., Poulet, F., Pilorget, C., Mandon, L., Forni, O., Cousin, A., Gasnault, O., Pilleri, P., Dubois, B., Quantin, C., Beck, P., Beyssac, O., Le Mouélic, S., Johnsson, J. R., McConnochie, T. H., Maurice, S., & Wiens, R. C. (2021). The SuperCam Infrared Spectrometer for the Perseverance Rover of the Mars 2020 mission. Icarus. Preprint, submitted November 1, 2021. https://doi.org/10.48550/arXiv.2110.15428
  17. Statement of Brimrose Corporation. Brimrose. URL: https://www.brimrose.com/brimrose-statement
  18. He, Z. P., Wang, B.,Y., Lv, G., Li, C. L., Yuan, L. Y., Xu, R., Chen, K., Wang, J. Y. (2014). Visible and near-infrared imaging spectrometer and its preliminary results from the Chang’E 3 project. Rev. Sci. Instrum, 85, 083104. https://doi.org/10.1063/1.4891865
  19. Li, C. L., Xu, R., Lv, G., Yuan, L. Y., He, Z. P., Wang, J. Y. (2019). Detection and calibration characteristics of the visible and near-infrared imaging spectrometer in the Chang’e-4. Rev. Sci. Instrum., 90, 103106. https://doi.org/10.1063/1.5089737
  20. Xu, R., Li, C., Yuan, L., Lv, G., Xu, S., Li, F., Jin, J., Wang, Z., Pan, W., Wang, R., et al. Lunar Mineralogical Spectrometer on Chang’E-5 Mission. Space Sci. Rev. (under review). https://doi.org/10.1007/s11214-022-00910-6
  21. Masalski, M., Waz, A., Błauciak, P., Zatonski, T., & Morawski, K. (2021). Handheld laser-fiber vibrometry probe for assessing auditory ossicles displacement. J. Biomed. Opt., 26, 077001
  22. Peacock, J., Dirckx, J., & Von Unge, M. (2014). Magnetically driven middle ear ossicles with laser vibrometry as a new diagnostic tool to quantify ossicular fixation. Acta Otolaryngol., 134, 352–357.
  23. Semenenko, H., Wright, S., Lollie, M, Flórez, J., Hoban, M., & Curchod, F. (2020). Quantum Communication 101. NASA SCaN
  24. Li, W., Deng, Q., Guo, X., & Li, X. (2023). An acousto-optic modulator based bi-frequency interferometer for quantum technology. arXiv:2210.00406v3
  25. Lim, S., Baek, S., & Whitlow, J., et al. (2024). Design and characterization of individual addressing optics based on multi-channel acousto-optic modulator for 171Yb+ qubits. arXiv:2402.13560v1
  26. Mathevet, R., Chalopin, B., Massenot, S. (2020). Single photon beat note in an acousto-optic modulator-based interferometer. Am. J. Phys. 88, 313
  27. Kawasaki, A. et al. (2022). Generation of highly pure single-photon state at telecommunication wavelength. Opt. Express, 30, 24831

Received 17.07.2025
Accepted 21.10.2025
Published online 01.12.2025

Фундаментальные и прикладные проблемы черной металлургии
Logo