DOI: 10.52150/2522-9117-2025-39-03

V. V. Horupakha1, Researcher, ORCID 0000-0003-0531-1871
Yu. S. Semenov1,*, Ph. D. (Tech.), Senior Research, Head of the Department, ORCID 0000-0003-2299-5742
O. Yu. Khudyakov1, Ph. D. (Tech.), Senior Research, ORCID 0000-0002-6507-1120
Ye. I. Shumelchyk1, Ph. D. (Tech.), Senior Research, ORCID 0000-0001-5350-6425
S. V. Vashchenko1, Ph. D. (Tech.), Senior Research, ORCID 0000-0001-8344-961X
K. V. Baiul1, D. Sc. (Tech.), Leading Researcher, ORCID 0000-0003-1426-7956

Iron and Steel Institute of Z.I. Nekrasov, National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine

Corresponding author: yuriy.semenov.isi@gmail.com

RESEARCH OF CIRCULAR GAS DISTRIBUTION IN A BLAST FURNACE USING INFORMATION ON BLOW DISTRIBUTION AND MODERN CONTROL MEASURES

Abstract. The article presents the results of studies of the circumferential gas distribution in a blast furnace using information on the distribution of the blast and modern control means performed on the blast furnaces of PrJSC “Kamet-steel”. The constant and variable factors of influence on the unevenness of the blast flow rate along the circumference of the blast furnaces are highlighted. The main constant factors are the features and technical solutions of the hot blast supply tract, the location of the inlets and the design features of the lining of the inlet zone. The qualitative and quantitative influence of the blow supply units from the direct to the annular air duct, as well as the location of the cast-iron inlets for the modern operation of the blast furnaces of PrJSC “Kamet-steel” are determined. The main variable factors of influence on the unevenness of the blow flow rate are the technological and fuel and raw material conditions of the blast furnace smelting. The article develops a criterion for assessing the circumferential uniformity of the blast for periodic measurements of this unevenness, and also establishes correlations between the main gas-dynamic and temperature-thermal parameters of the tuyere zone, namely: the blast velocity at the tuyere exit, which reflects the actual volume of the blast passing through the cross-section of the air tuyere without taking into account the influence of the fuel supplied to the tuyere and without taking into account the influence of thermal radiation from the combustion chamber; the blast flow rate and the theoretical combustion temperature, which reflects the isothermal temperature-thermal balance of the tuyere zone, depending on the value of the coefficient of unevenness of the blast distribution across individual air tuyere for the operating conditions of the blast furnaces of PrJSC “Kamet-stal”. The article establishes the relationship between the circumferential unevenness of the blow along the air tuyeres and the temperature of the peripheral gas flow and the relationship between the theoretical combustion temperature and the temperature indicators of the gas flow assessment above the surface of the charge, which characterize the development of the axial and peripheral gas flow, the gas permeability of the intermediate zone of the furnace top radius and the size of the axial vent. The multifactorial relationship between: blow – theoretical combustion temperature – the ratio of reduction in the “lower” and “upper” zones of the blast furnace – ore load is considered and analyzed, the need to comply with the conditions for burning fuel impurities to reduce the theoretical temperature and achieve the efficiency of blast furnace smelting is shown.

Keywords: blast furnace, blast furnace smelting control, pulverized coal, circumferential distribution of blast, gas flow temperatures.

For citation: Horupakha, V. V., Semenov, Yu. S., Khudyakov, O. Yu., Shumelchyk, Ye. I., Vashchenko, S. V., & Baiul, K. V. Research of circular gas distribution in a blast furnace using information on blow distribution and modern control measures. Fundamental and applied problems of ferrous metallurgy, 39, 34-60. https://doi.org/10.52150/2522-9117-2025-39-03

References

  1. Novospasskiy, A. F. (1938). Konstruktsii domennykh pechey i ustroystvo tsekhov. Vol. 2: Podacha syrykh materialov k pecham i nagrev vozdukha. GONTI
  2. Tselikov, A. I., Polukhin, P. I., & Grebenik, V. M. (1987). Mashiny i agregaty metallurgicheskikh zavodov. V 3 t. T.1: Mashiny i agregaty domennykh tsekhov: uchebnik dlya vuzov. Metallurgiya
  3. Lyubin, A. Ye. (2010). Metallicheskiye konstruktsii sooruzheniy kompleksa domennoy pechi. Proyektirovaniye. Ekspluatatsiya. Diagnostika tekhnicheskogo sostoyaniya. Stal
  4. Bugayev, K. M., Antonov, V. M., & Varshavskiy, G. V. (1987). Vliyaniye raspredeleniya dut’ya po furmam na gazovyy potok v domennoy pechi. Stal, (2), 17−22
  5. Bugayev, K. M. (1974). Raspredeleniye gazov v domennykh pechakh. Metallurgiya
  6. Tarasov, V. P., & Tarasov, P. V. (2007). Teoriya i tekhnologiya domennoy plavki. Intermet Inzhiniring
  7. Shklyar, F. R., Babushkin, N. M., & Timofeyev, V. N. (1966). Eksperimental’noye issledovaniye raspredeleniya dut’ya po furmennym priboram domennoy pechi pered zaduvkoy. Teplotekhnika domennogo i aglomeratsionnogo proizvodstva: tr. VNIIMT, 4, 313–325
  8. Druzhkov, V. G., Shirshov, M. Yu., & Prokhorov, I. Ye. (2015). Metody opredeleniya raskhoda goryachego dut’ya na otdel’no vzyatuyu furmu v gorne domennoy pechi. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova, 2,1–27
  9. Semenov, Y. S., Shumelchyk, Y. I., Horupakha, V. V., Vashchenko, S. V., Khudyakov, O. Y., Semion, I. Y., Chychov, I. V, Hulina, I. H., & Zakharov, R. H. (2022). Development and Implementation of Decision Support Systems for Blast Smelting Control in the Conditions of PrJSC “Kamet-steel”. MDPI, Metals, Special Issue “Mathematical Modelling of the Ironmaking Blast Furnace”, 12(6), 985. https://doi.org/10.3390/met12060985
  10. Semenov, Yu. S., Horupakha, V. V., & Shumelʹchyk, Ye. I. (2022). Sposib upravlinnya okruzhnym rozpodilom duttya v domenniy pechi (Method of controlling the circumferential distribution of blast in a blast furnace): patent of Ukraine UA 125879 C2 for the invention. Bulletin No. 26
  11. Semenov, Yu. S., Horupakha, V. V., Shumelchik, E. I., & Alter, M. A. (2021). Blast Furnace Operation Improvement by Forming Uniform Circular Distribution of Raceway’s Thermal Mode. AISTech 2021 – Proceedings of the Iron & Steel Technology Conference, 29 June–1 July 2021, Nashville, Tenn., USA. Pp. 184–192. https://doi.org/10.33313/382/018
  12. Kanaev, V. V., Kobeza, I. I., Buzoverya, M. T., et. al. (1995). Control of blas distribution on air blast furnace tuyeres. Metallurgicheskaya i gornorudnaya promyshlennost, (2), 69-71
  13. Bol’shakov, V. I., Shuliko, S. T., Kanaev, V. V., et al. (1999). Investigation of gas Distribution in a Large Blast Furnace. Steel in Translation, 29(12), 1-5
  14. Semenov, Y. S., Shumelchik, E. I., & Horupakha, V. V. (2018). Diahnostyka ta upravlinnya domennoyu plavkoyu v zminnykh palyvno-syrovynnykh umovakh (Diagnostics and Management of Blast Furnace Smelting in Variable Fuel and Raw Materials Conditions). Dominanta Print
  15. Liu, R., Zhao, W-g., Liu, S., Liu, X-j., Li X., Zhang, Z-f., Zhao, J., & Lyu, Q. (2023). Intelligent Prediction and Real-time Monitoring System for Gas Flow Distribution at the Top of Blast Furnace. ISIJ International, 63(10), 1714-1726. https://doi.org/10.2355/isijinternational.ISIJINT-2023-099
  16. Omori, Y. (1987). Blast Furnace Phenomena and Modelling. Elsevier. https://doi.org/10.1007/978-94-009-3431-3
  17. Semenov, Y. S., Shumel’chik, E. I., Gorupakha, V. V. (2018). Efficient Management of the Charging of Blast Furnaces and the Application of Contemporary Means of Control Over the Variable Technological Conditions. Metallurgist, 61(11–12), 950-958. https://doi.org/10.1007/s11015-018-0591-4
  18. Semenov, Y. S., Shumelchik, E. I., Horupakha, V. V., Kuznetsov, A. M., Zubenko, A. V., & Kovalenko, A. G. (2017). Using Thermal Probes to Regulate the Batch Distribution in a Blast Furnace with Pulverized-Coal Injection. Steel in Translation, 2017, 47(6), 389-393. https://doi.org/10.3103/S0967091217060092.
  19. Semenov, Y. S., Shumelchik, E. I., & Horupakha, V. V. Expert Module of the Thermal Probes System for Blast Furnace Charging Control. Steel in Translation. 2018. 48(12): 802-806 https://doi.org/10.3103/S0967091218120136
  20. Shumelchyk, Y., Semenov, Y., Horupakha, V., Krot, P., & Hulina, I. (2022). Model-Based Decision Support System for the Blast Furnace Charge of Burden Materials. In: Chaari, F., Leskow, J., Wylomanska, A., Zimroz, R., Napolitano, A. (eds) Nonstationary Systems: Theory and Applications. WNSTA 2021. Applied Condition Monitoring, Springer, Cham., 18, 340-351 https://doi.org/10.1007/978-3-030-82110-4_18
  21. Parshakov, V. M. , Takhautdinov, R. S. , Bodyaev, Y. A. , Gibadullin, M. F., Kanin, L. S., Chevychelov, A. V., Polinov, A. A., & Zakharov, S. A. (2009). Multipoint thermal-probe monitoring the radial gas distribution in blast furnaces with nonconical charging systems at OAO MMK. Steel in Translation, 39(10), 886-889. https://doi.org/10.3103/S0967091209100106
  22. Zhou, P., You, L., Liu, J.-P., & Zhang, X. (2017). Centre Temperature Estimation of Blast Furnace Cross Temperature Measuring Based on M-SVR and RVFLNs. Dongbei Daxue Xuebao/Journal of Northeastern University, 38(5), 614-619. https://doi.org/10.3969/j.issn.1005-3026.2017.05.002
  23. Shi, L., Wen, Y-b., Zhao, G-s., & Yu, T. (2016). Recognition of blast furnace gas flow center distribution based on infrared image processing. J. Iron Steel Res. Int.,  23, 203-209. https://doi.org/10.1016/S1006-706X(16)30035-8
  24. Chen, Z., Jiang, Z., Gui, W., & Yang, C. (2016). A Novel Device for Optical Imaging of Blast Furnace Burden Surface: Parallel Low-Light-Loss Backlight High-Temperature Industrial Endoscope. IEEE Sensors Journal, 16(17), 6703-6717. https://doi.org/10.1109/JSEN.2016.2587729
  25. Xu, T., Jiang, Z., & Gui, W. (2018). A Light Field Imaging Based Measuring Method for Blast Furnace Burden Distribution. IFAC-PapersOnLine, 51(21), 257-261. https://doi.org/10.1016/j.ifacol.2018.09.428

Received  13.08.2025
Accepted 21.10.2025
Published online 01.12.2025

Фундаментальные и прикладные проблемы черной металлургии
Logo