DOI: 10.52150/2522-9117-2024-38-686-709

Khudyakov Oleksandr Yuriiovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-6507-1120.

Vashchenko Serhii Volodymyrovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-8344-961X. E-mail: sergeyvaschenko@yandex.ua

Baiul Kostiantyn Vasylovych, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-1426-7956. E-mail: baiulkonstantin@gmail.com

Semenov Yurii Stanislavovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-2299-5742. E-mail: yuriy.semenov.isi@gmail.com

Krot Pavlo Viktorovych, Ph. D. (Tech.), Assistant Professor, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego St., 27, Wrocław, 50370, Poland. ORCID 0000-0002-3347-3862

DEVELOPMENT OF THE UNIVERSAL METHOD FOR PREDICTING THE DENSITY OF BRIQUETTES FROM DRY FINE-FRACTIONAL MATERIALS BASED ON THE RESULTS OF A COMPARATIVE STUDY OF COMPRESSION FACTORS

Abstract. Most of the known models for predicting the density of powdered materials are empirical in nature and cannot be applied to a wide range of materials. In order to create a universal method for predicting density, a comparative study of the influence of technological factors on the compressibility of powders was performed in this paper, and the fundamental connections between compressibility and the physical and energy properties of the charge particles were established. Using the method of two-factor analysis of variance (two-way ANOVA), the influence of size and the nature of dry powder’s particles on the compression intensity factor was compared.  It was found that under conditions when the size of large and small particles differs by no more than one order of magnitude, the dominant factor affecting the compression of the powder is the characteristics of the nature of the particles. Reliable connections between the compressibility of powders and thermodynamic, thermal (melting point, heat of sublimation, etc.) and mechanical (Young’s modulus, shear modulus, hardness, etc.) properties of the particle substance have been obtained.  We also obtained statistical correlations between the compressibility of powders and the energy characteristics of the crystalline substance of the powder particles: the energy of the crystal ion lattice, the energy of atomization, and the energy of the core-electron interaction. The maximum closeness of correlation of the dependences is estimated by the Chaddock scale as high and very high. Based on the above dependencies, a multiple regression model of the combined effect of the energy and structural characteristics of the particles’ crystal lattice of on the compressibility of a powder was developed. The coefficient of determination of the model is 0.98. Also, using the obtained dependencies, a universal method for predicting the density of dry powder compacts depending on the applied pressing pressure was developed. The prediction error when applying the method does not exceed 9.5%.  The developed method can be used to perform, without conducting experimental studies, a preliminary assessment of the possibility of achieving the required briquette density, selecting technological modes, determining the energy and power characteristics of the process and technical characteristics of pressing equipment.

Key words: dry powder materials, prediction of briquette density, technological factors, particle size, physical properties of the particle, energy characteristics of the particle, two-factor analysis of variance.

DOI: https://doi.org/10.52150/2522-9117-2024-38-686-709

For citation: Khudyakov, O. Yu., Vashchenko, S. V., Baiul, K. V., Semenov, Yu. S., & Krot, P. V. (2024). Development of the universal method for predicting the density of briquettes from dry fine-fractional materials based on the results of a comparative study of compression factors / Fundamental and applied problems of ferrous metallurgy, 38, 686-709. https://doi.org/10.52150/2522-9117-2024-38-686-709.

References

  1. Comoglu, T. (2007). An overview of compaction equations. Journal Fac. Pharm., 36(2), 123-133
  2. Öztürk, B., Topcu  A., & Cora Ö. N. (2021). Influence of processing parameters on the porosity, thermal expansion, and oxidation behavior of consolidated Fe22Cr stainless steel powder. Powder Technology, 382, 199-207
  3. Kempen, D., Piccolroaz, A., & Bigoni, D. (2019). Thermomechanical modelling of ceramic pressing and subsequent sintering. International Journal of Mechanical Sciences, 156, 146-158
  4. Pan, J., Shi, B., Zhu, D. et al. (2016). Improving Sintering Performance of Specularite Concentrates by Pre-briquetting Process. ISIJ International, 56(5), 777-785
  5. Khudyakov, A. Yu., Vashchenko, S. V., Baiul, K. V. et al. (2021). Experimental verification of new compaction equations for fine materials of the mining and metallurgical complex. Part 1. Basic compaction equation. Refract. Industr. Ceram., 62(1), 15-24
  6. Baiul, K. V., Vashchenko, S. V., Khudyakov, A. Yu. et al. (2022). Optimization of wastes compaction parameters in case of gradual wear of the briquetting press rolls. Structural Integrity, 25, 293-302
  7. Peddapatla, R. V. G., Slevin, C., Sheridan, G. et al. (2022). Modelling the Compaction Step of a Platform Direct Compression Process. Pharmaceutics, 14, 695.
  8. Pitt, K. G., Webber, R. J., Hill, K. A. et al. (2015). Compression prediction accuracy from small scale compaction studies to production presses. Powder Technology, 270, Part B, 490-493
  9. Persson, A. S., & Alderborn, G. (2018). A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression. European Journal of Pharmaceutics and Biopharmaceutics, 125, 28-37
  10. Liang, Y., Gregory, N., & Binner, J. (2004). Green Forming with Nanoparticles. Key Engineering Materials, 264-268, 2319-2322
  11.  Obradović, N., Djordjevic, N., & Peles, A. (2015). The influence of compaction pressure on the density and electrical properties of cordierite-based ceramics. Science of Sintering, 47(1), 15-22
  12.  Munir, Z., Anselmi-Tamburini, U., & Ohyanagi, M. (2006). The Effect of Electric Field and Pressure on the Synthesis and Consolidation of Materials: A Review of the Spark Plasma Sintering. Journal of Materials Science, 41(2), 763-777
  13. Norfauzi, T., Hadzley, A. B., Azlan, U. A. A. et al. (2021). Effect of pressure on density, porosity and flexural strength during cold isostatic press of alumina-ysz-chromia cutting tool. Journal of Physics: Conference Series, IRTTEC 2020,1793, 012073
  14. Torres, M. A., Madre, M. A., Dura, O. J. et al. (2022). Evaluation of pressure and temperature effect on the structure and properties of Ca2.93Sr0.07Co4O9 ceramic materials. Ceramics International, 48(6), 7730-7747
  15. Jong-Ho, B., Kang-Min, K., Kyeong-Uk, L. et al. (2021). Study on the Manufacturing of Ultra-Fine Ore Briquettes for Charging in a Sintering Machine. Korean Journal of Metals and Materials, 59(1), 14-20
  16. Khudyakov, A. Yu., Vashchenko, S. V., Baiul, K. V. et al. (2022). New method for predicting the compactability of charges made from fine materials of the mining and smelting industry. Metallurgist, 65(9-10), 941-951
  17. Khudyakov, A., Vashchenko, S., Baiul, K. et al. (2022). Optimization of briquetting technology of fine-grained metallurgical materials based on statistical models of compressibility. Powder Technology, 412(5), 118025
  18.  Sen, R. Mitra, K., & Dey, R. (2010). Effect of grading of chromite ores on the quality of briquettes. ISIJ International, 50(2), 200-206
  19. Mäkelä, M., Paananen, T., Heino, J. et al. (2012). Influence of fly ash and ground granulated blast furnace slag on the mechanical properties and reduction behavior of cold-agglomerated blast furnace briquettes. ISIJ International, 52(6),  1101-1108
  20. Singh, M., & Björkman, B. (2004). Effect of Processing Parameters on the Swelling Behaviour of Cement-bonded Briquettes. ISIJ International, 44(1), 59-68
  21. Anyashiki, T., Fujimoto, H., Yamamoto, T. et al. (2015). Basic examination of briquetting technology for ferro-coke process on 0.5 t/d bench scale plant. Tetsu-to-Hagane, 101(10), 515-523
  22. Das, R., Mondal, M. K., & Pramanik, S. (2022). Strengthening behaviour and microstructural properties during the compaction of reduced blast furnace flue dust – fly ash – iron metal matrix composite fines using powder metallurgy route. Transactions of Indian Institute of Metals, 75(3), 2255-2263
  23. Qi, L., Zhou, X., Peng, X. et al. (2022). Study on the Pore Structure and Fractal Characteristics of Briquettes with Different Compression Loads. Sustainability, 14, 12148
  24. Li, Y., Zang, Y., Xiong, Y. et al. (2023). Effect of Briquetting Pressure on the Properties, Reduction Behavior, and Reduction Kinetics of Cold-Bonded Briquette Prepared From Return Fines of Sinter. Metallurgical and Materials Transactions B, 54, 355-369
  25. Dvilis, E. S. (2014). Zakonomernosti processov konsolidacii poroshkovyh sistem pri izmenenii uslovij deformacii i fizicheskih vozdejstvij. Dis. dokt. fiz.-mat. nauk : 01.04.07. Tomskij politeh. un-t
  26. Samsonov, G. V., & Ristić, M. M. (1973). Au Essay on the Generalization of the Sintering Theory. International Team for Studyng Sintering. Beograd
  27. Andreeva, N. V., Radomyselski, I. D., & Shcherban, N. I. (1975). Compressibility of powders. Powder Metallurgy and Metal Ceramics, 14(6), 457-464
  28. Andrievskii, R. A. (1988). Role of the nature of the chemical bond and the dispersion in the formation of powder materials. Powder Metall Met Ceram, 27(8),  627-633
  29. Andrievskii, R. A. (1991). Poroshkovoe materialovedenie. Metallurgiya
  30. GOST 4234-77. (2001). Reagents. Potassium chloride. Specifications. Standards Publishing
  31. GOST 4530-76. (1992). Reagents. Calcium carbonate. Specifications. Standards Publishing
  32. Brudz, V. H., Rakovskaia, V. A., & Uskova, L. Ie. (1968). Spravochnik pokazatelei kachestva khimicheskikh rieaktivov. Book 2. Khimiia
  33. GOST 29219-91. (2004). Fluorite concentrates for acids and ceramics. Specifications.  Standards Publishing
  34. GOST 9808-84.(1998). Pigment titanium dioxide. Specifications. Standards Publishing
  35. GOST 9428-73. (1993). Reagents. Silicon (IV) oxide. Specifications. Standards Publishing
  36. GOST 30558-98. (2002). Alumina, metallurgical. Specifications. Standards Publishing
  37. Andreeva, N. V., Radomyselski, I. D., & Shcherban, N. I. (1975). Compressibility of powders. Powder Metallurgy and Metal Ceramics, 14(6), 457-464
  38. Kunin, N. F, & Yurchenko, B. D. (1963). Regularities in the compacting of powders of different materials. Powder Metallurgy and Metal Ceramics, 2(6), 433-439
  39. Yemelianov, V. S., & Yevstiukhyn, A. I. (1968). Metalurhiia yadernoho horiucheho. Atomizdat
  40. Ge, R. (1991). A new powder compaction equation. International Journal of Powder Metallurgy, 27(3), 211-216
  41. Shapiro, I., & Kolthoff, I. M. (1974). The compressibility of Silver Bromide Powders. The Journal of Physical and Colloid Chemistry, 51(2), 483-493
  42. Panelli, R., & Filho, F. A. (1998). Compaction Equation and Its Use to Describe Powder Consolidation Behavior. Powder Metallurgy, 41(2), 131-133
  43. Walker, E. E. (1923). The properties of powders. Part VI. The compressibility of powders. Transactions of the Faraday Society, 19, 73–82
  44. Mort, P. R., Sabia, R., Niesz, D. E. et al. (1994). Automated generation and analysis of powder compaction diagrams. Powder Technology, 79(2), 111-119
  45. Seltman, H. J. (2018). Experimental Design and Analysis. Carnegie Mellon University
  46. Dean, A., Morris, M., Stufken, J., et al. (2016). Handbook of Design and Analysis of Experiments. Boca Raton : Tailor and Francis Group
  47. Yudenkov, V. A. (2013). Dispiersionnyi analiz. Biznesofsiet
  48. Emsley, J. (1998). The elements. Oxford : Clarenden Press
  49. Samsonov, G. V. (2012). Handbook of the Physicochemical Properties of the Elementes. NY : Springer New York
  50. Haynes ,W. M. (2014). Handbook of Chemistry and Physics. Boca Raton : Taylor & Francis Group
  51. Dric, E. M. (1985). Svojstva elementov. Metallurgiya
  52. Lidin, R. A., Andreeva, L. L., & Molochko, V. A. (2006). Konstanty neorganicheskih veshestv. Drofa
  53. Bacanov, S. S. (2000). Strukturnaya himiya. Dialog – MGU
  54. Yacmirskij, K. B. (1951). Termohimiya kompleksnyh soedinenij. Izd-vo Akad. nauk SSSR
  55. Urusov, V. S. (1975). Energeticheskaya kristallohimiya. Nauka
  56. Pauling, L. (1988). General Chemistry. NY : Dover Publications
  57. Krasnov, K. S. (1984). Molekuly i himicheskaya svyaz. Vysshaya shkola
  58. Zuev, V. V. (2015). Concept of core electron structure of minerals. Gornyi Zhurnal, (5), P. 23- 29.
  59. Zuev, V. V. (2009).  Ostovno-elektronnaya kristallohimiya i svojstva mineralov. Nauka
  60. Prihodko, E. V. (1995). Metallohimiya mnogokomponentnyh sistem.  Metallurgiya
  61. Sobolev, V. S. (2007). Vvedenie v mineralogiyu silikatov. Geo
  62. Hasanov, O. L., Struc, V. S., & Dvilis, E. S. (2015). Soprotivlenie materialov. Tverdost i treshinnostojkost nanostrukturnyh keramik. Yurajt
Фундаментальные и прикладные проблемы черной металлургии
Logo