DOI: 10.52150/2522-9117-2024-38-602-620

Kononenko Ganna Andriivna, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
National Technical University “Dnipro Polytechnic”, Dmytra Yavornytskoho Ave., 19, Dnipro, 49005, Ukraine.
ORCID: 0000-0001-7446-4105. E-mail: perlit@ua.fm

Kimstach Tetiana Volodymyrivna, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
Ukrainian State University of Science and Technologies, Lazariana St., 2, Ukraine, Dnipro, 49010.
ORCID: 0000-0002-8993-201X. E-mail: 1375tatyana@gmail.com

Podolsky Rostyslav Viacheslavovych, Ph. D., Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
ORCID: 0000-0002-0288-0641. E-mail: rostislavpodolskij@gmail.com

Safronova Olena Anatoliivna, Junior Researcher, Ph. D. Student, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-4032-4275. E-mail: safronovaaa77@gmail.com

Klinova Olha Pylypivna, Lead Engineer, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107

PROSPECTS FOR THE DEVELOPMENT OF HIGH-STRENGTH BAINITE STEELS

Abstract. Purpose of the work. Analysis of the current state of development of high-strength bainite steels, study of the mechanisms of formation of the bainite structure and its influence on the mechanical properties of the material. Determination of the prospects for the application of steels with a carbide-free bainite structure in various industries. Research methodology. Analysis of literature sources devoted to the development and improvement of bainite steels. In the process of research, methods of review/comparison/generalization of data are used, which allow to identify the main trends and approaches in the study of the mechanisms of formation of bainite structures, their influence on properties. Research results. The work analyzes scientific literature sources devoted to the study of the features of bainite transformation. The prospects for the development of high-strength bainite steels, which are characterized by a combination of high strength, plasticity and toughness, are considered. Modern approaches to obtaining bainite structures are analyzed, in particular the use of alloying and heat treatment, which allow to optimize the mechanical properties of steel. The influence of alloying elements on the kinetics of bainite formation, the stability of retained austenite and the general structure of steel is considered. A review of current trends in the development of promising technologies for heat treatment of high-strength bainite steels is carried out. Practical significance. An analysis of the prospects for the application of bainite steels in critical industries, such as transport engineering, energy, construction and the military industry is presented. The directions of future research aimed at expanding the scope of application and improving the performance properties of these steels, as well as ensuring their competitiveness in the modern materials market are considered.

Keywords: carbide-free bainite, austenite, mechanical properties, alloying elements, heat treatment.

DOI: https://doi.org/10.52150/2522-9117-2024-38-602-620

For citation: Kononenko, G. A., Kimstach, T. V., Safronova, O. A., Podolskyi, R. V. & Klynova, O. P.(2024). Prospects for the development of high-strength bainite steels. Fundamental and applied problems of ferrous metallurgy, 38, 602-620. https://doi.org/10.52150/2522-9117-2024-38-602-620

References

  1. Hofer, C., Leitner, H., Winkenhofer F., Clemens H. & Primig S. (2015). Structural characterization of “carbide-free” bainite in a Fe–0.2C–1.5Si–2.5Mn steel Materials Characterization, 102, 85-91. https://doi.org/10.1016/j.matchar.2015.02.020
  2. Hell, J. C., Dehmas, M., Allain, S. & Prado, J. M. (2011). Microstructure – Properties Relationships in Carbide-free Bainitic Steels. ISIJ international, 51(10), 1724-1732. https://doi.org/10.2355/isijinternational.51.1724
  3. Caballero, F. G. Bhadeshia, H. K. D. H. (2004). Very strong bainite. Current Opinion in Solid State and Materials Science, 8(3-4), 251–257. https://doi.org/10.1016/j.cossms.2004.09.005
  4. Garcia-Mateo, C., Caballero, F. G. & Bhadeshia, H. K. D. H. (2005). Mechanical Properties of Low-Temperature Bainite. Materials Science Forum, 500, 495-502. https://doi.org/10.4028/www.scientific.net/MSF.500-501.495
  5. Soliman, M., Mostafa, H., El-Sabbah, A. S. & Palkovski, H. (2010). Low temperature bainite in steel with 0.26 wt%. C Mater. Sci. Eng. A, 527, 7706-7713. https://doi.org/10.1016/j.msea.2010.08.037
  6. Kussa, R. O., Voloshyn, V. S., Zurnadzhy, V. I., Yefremenko, V. H., Zaichuk, N. P., Tkachev, R. O., Havrylova, V. H. & Dzherenova A. V. (2021) Tekhnolohii termichnoi obrobky vysokomitsnykh AHSS- tretoho pokolinnia. Mizhvuzivskyi zbirnyk “NAUKOVI NOTATKY”, 71. 181-190. https://doi.org/10.36910/6775.24153966.2021.71.26
  7. Soleimani, M., Kalhor, A. & Mirzadeh, H. (2020). Transformation-induced plasticity (TRIP) in advanced steels: a review. Materials Science and Engineering: A, 795. 140023. https://doi.org/10.1016/j.msea.2020.140023
  8. Zurnadzhy, V., Efremenko, V., Petryshynets, I., Chabak, Y., & Efremenko, A. (2022). Improvement of mechanical properties of structural steels by multi-phase structure formation. Premier Publishing s.r.o. https://ppublishing.org/media/uploads/journals/monograph/Efremenko.pdf
  9. Zurnadzhy, V. I., Voloshyn, V. S., Kussa, R. O., Yefremenko, V. H., Dzherenova, A. V. & Tsvetkova, O. V (2020). Sovremennye konstruktsyonnye staly s TRIP-effektom. Nauka ta prohres transportu. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana. 5, 80-92. http://nbuv.gov.ua/UJRN/vdnuzt_2020_5_9
  10. Davenport, E. & Bain, E. (1930). Trans. AIME, 90(1), 117–154
  11. Goulas, C., Mecozzi, M. G. & Sietsma, J. (2016). Bainite formation in medium-carbon low-silicon spring steels accounting for chemical segregation. Metallurgical and Materials Transactions A, 47, 3077–3087. https://doi.org/10.1007/s11661-016-3418-6
  12. Slama, M. B. H., Gey, N., Germain, L., Hell, J. C., Zhu, K. & Allain, S. (2016). Fast granularization of lath-like bainite in FeNiC alloys during isothermal holding at Ms+ 20 K (+20 °C). Metallurgical and Materials Transactions A, 47, 15–18. https://doi.org/10.1007/s11661-015-3209-5
  13. Morales-Rivas, L. (2022).Viewpoints on Technological Aspects of Advanced High-Strength Bainitic Steels. Metals, 12, 195. https://doi.org/10.3390/met12020195
  14. Sandvik, B. P. V. (1982). The bainite reaction in Fe–Si–C alloys: the primary stage. Met. Trans. A, 3(5), 777–787. https://doi.org/10.1007/bf02642392
  15. Fang, H.-S., Yang J.-B., Yang, Z.-G. & Bai, B.-Z. (2002). The mechanism of bainite transformation in steels. Scripta Materialia, 47(3), 157-162. https://doi.org/10.1016/S1359-6462(02)00122-7
  16. Bhadeshia, H. K. D H. (2015). Bainite in Steels. Theory and Practice. CRC Press
  17. Kumar, A., Blessto, B., & Singh, A. (2023). Development of a low-carbon carbide-free nanostructured bainitic steel with extremely high strength and toughness. Materials Science and Engineering: A887, 145186. https://doi.org/10.1016/j.msea.2023.145186
  18. Garcia-Mateo, C., Caballero, F. G. & Bhadeshia, H. K. D. H. (2003). Development of Hard Bainite. ISIJ International, 43(8), 238–1243. http://surl.li/aouerw
  19. Caballero, F., Miller, M., Babu, S., & Garciamateo, C. (2007). Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Materialia55(1), 381–390. https://doi.org/10.1016/j.actamat.2006.08.033
  20. Yang, H.-S., Bhadeshia, H. K. D. H. (2008). Designing low carbon, low temperature bainite. Materials Science and Technology, 24(3), 335-342. https://doi.org/10.1179/174328408X275982
  21. Soliman, M., Mostafa, H., El-Sabbagh, A. S. & Palkowski, H. Low temperature bainite in steel with 0.26 wt% C. Materials Science and Engineering: A, 527(29–30), 7706-7713. https://doi.org/10.1016/j.msea.2010.08.037
  22. Bojarski, Z. & Bold T. (1974). Structure and properties of carbide-free bainiteStructure et propriétés d’une bainite sans carbureStruktur und eigenshaft karbidfreier Bainite. Acta Metallurgica, 22(10), 1223-1234. https://doi.org/10.1016/0001-6160(74)90136-9.
  23. Bhattacharyya, T., Singh, S. B., Das, S., Haldar, A. & Bhattacharjee, D. (2011). Development and characterisation of C–Mn–Al–Si–Nb TRIP aided steel. Materials Science and Engineering: A, 528(6), 2394–2400. https://doi.org/10.1016/j.msea.2010.11.054
  24. Rana, R., Cordova-Tapia, E.,  Jimenez, J. A., Morales-Rivas, L. & Garcia-Mateo, C. (2024). Design of carbide free bainitic steels for hot rolling practices. Philosophical Magazine Letters, 4(1)
  25. Bleck, W., Guo, X. & Ma Y. (2017). The TRIP effect and its application in cold formable sheet steels. Steel Research In-ternational, 88(10), 1–10. https://doi.org/10.1002/srin.201700218
  26. Navarro-Lopez, A., Sietsma, J., Santofimia, M.J. (2016). Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a low-C High-Si steel. Metallurgical and Materials Transactions A, 47, 1028–1039. https://doi.org/10.1007/s11661-015-3285-6
  27. Yi, H. L. Chen, P. &, Bhadeshia, H. K. D. H. (2014). Optimizing the morphology and stability of retained austenite in a δ-TRIP steel. Metallurgical and Materials Transactions, 45(8), 3512–3518. https://doi.org/10.1007/s11661-014-2267-4
  28. Caballero, F. G., Miller, M. K., Babu, S. S. & Garcia-Mateo, C. (2007). Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Materialia, 55(1), 381–390. https://doi.org/10.1016/j.actamat.2006.08.033
  29. Bhadeshia, H. K. D. H. & Edmonds D. V. (1979). The bainite transformation in a silicon steel. Metall Trans A, 10(7), 895–907. https://doi.org/10.1007/BF02658309
  30. Caballero, F. G., Bhadeshia, H. K. D. H., Mawella, K. J. A., Jones, D. G., Brown, P. (2002). Very strong low temperature bainite. Material Science and Technology, 18, 279–284. https://doi.org/10.1179/026708301225000725
  31. Mahieu, J., De Cooman, B. C. & Maki J. (2002). Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity-aided steel. Metallurgical and Materials Transactions A. 33(8), 2537–2580. https://doi.org/10.1007/s11661-002-0378-9
  32. Mahieu, J., Claessens, S. & De Cooman, B. C. (2001). Galvanizability of highstrength steels for automotive applications.Metallurgical and Materials Transactions A, 32(11), 2905–2907. https://doi.org/10.1007/s11661-001-1042-5
  33. Mintz, B. (2001). Hot dip galvanising of transformation induced plasticity and other intercritically annealed steels. International Materials Reviews, 46(4), 169–197. https://doi.org/10.1179/095066001771048754
  34. Maki, J., Mahieu, J., De Cooman, B. C. & Claessens, S. (2003). Galvanisability of silicon free CMnAl TRIP steels. Mate-rials science and technology, 19(1), 125–131. https://doi.org/10.1179/026708303225009300
  35. Jacques, P. J., Girault, E., Mertens, A., Verlinden, B., Humbeeck, J. V. & Delannay, F. (2001). The developments of coldrolled TRIP-assisted multiphase steels Al-alloyed TRIP-assisted multi-phase steels. ISIJ International, 41(9), 1068–1074. https://doi.org/10.2355/isijinternational.41.1068
  36. De Cooman, B. C. (2004). Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opin-ion in Solid State and Materials Science, 8(3–4), 285–303. https://doi.org/10.1016/j.cossms.2004.10.002
  37. Kim, S. J., Lee, C. G., Choi, I. & Lee, S. (2001). Effects of heat treatment and alloying elements on the microstructure andmechanical properties of 0.15 wt pct C transformation-induced plasticity-aided cold rolled steel sheet. Metal-lurgical and Materials Transactions A, 32(3). 505–514. https://doi.org/10.1007/s11661-001-0067-0
  38. Santigopal, S., Sourav, D., Debalay, C., Indradev, S., Shiv Brat, S. & Arunansu, H. (2013). Development of multiphase microstructure with bainite, martensite and retained austenite in a co-containing steel through quenching and parti-tioning (Q&P) treatment. Metallurgical and materials transactions A, 44(13), 5653-5664. https://doi.org/10.1007/s11661-013-1929-y
  39. Timokhina I., Beladi H., Xiong X.-Y. & Hodgson P. D. (2013). On the low temperature strain aging of bainite in the TRIP steel. Metallurgical and Materials Transactions A, 44(11), 5177–5191. https://doi.org/10.1007/s11661-013-1864-y
  40. Huang, B. M., Yang, J. R., Yen, H. W., Hsu, C. H., Huang, C. Y., & Mohrbacher, H. (2014). Secondary hardened bainite. Materials Science and Technology30(9), 1014–1023. https://doi.org/10.1179/1743284714y.0000000536
  41. Liang, Z., Li, H., Chen, C., Fu, H., Feng, X., Gao, X., Yang, Z., & Zhang, F. (2024). Introducing nano-VC precipitates makes ultrafine bainitic steel a better combination of strength, ductility, and toughness. Materials Research Letters12(10), 756–763. https://doi.org/10.1080/21663831.2024.2386439
  42. Kononenko, H. A., Kimstach, T. V., Safronova, O. A. & Podolskyi, R. V. (2023). Shliakhy pidvyshchennia stiikosti ta zhyvuchosti lystovoho prokatu iz bronovoi stali. (Ohliad). Fundamental and applied problems of ferrous metallurgy, 37, 447-464. https://doi.org/10.52150/2522-9117- 2023-37-447-464
  43. Singh, S. B. & Bhadeshia, H. K. D. H. (1998). Estimation of bainite plate-thickness in low-alloy steels. Materials Science and Engineering: A, 245(1), 72-79. https://doi.org/10.1016/S0921-5093(97)00701-6
  44. Hesse, O., Liefeith, J., Kunert, M., Kapustyan, A., Brykov, M. & Efremenko, V. (2016). Bainit in Stählen mit hohem Widerstand gegen Abrasivverschleiß (Bainite in Steels with High Resistance to Abrsive Wear). Tribologie und Schmierungstechnik. 63(2), 5–13. http://surl.li/gubkxo
  45. Goulas, C., Mecozzi, M. G. & Sietsma, J. (2016). Bainite formation in medium-carbon low-silicon spring steels accounting for chemical segregation. Metallurgical and Materials Transactions, 47(6), 3077–3087. https://doi.org/10.1007/s11661-016-3418-6
  46. Mohanty, R. R., Girina, O. A. & Fonstein, N. M. (2011). Effect of heating rate on the austenite formation in low-carbon high-strength steels annealed in the intercritical region. Metallurgical and Materials Transactions, 42(12), 3680-3690. https://doi.org/10.1007/s11661-011-0753-5
  47. Kang, Jian, Wang, Chao, Li, Yunjie, Yuan, Guo & Wang Guodong. (2016). Effect of direct quenching and partitioning treatment on mechanical properties of a hot rolled strip steel. Journal of Wuhan University of Technology-Mater. Sci. Ed., 31(1), 178-185. https://link.springer.com/article/10.1007/s11595-016-1349-0

Фундаментальные и прикладные проблемы черной металлургии
Logo