DOI: 10.52150/2522-9117-2024-38-542-565
Babachenko Oleksandr Ivanovych, Corresponding Member of the National Academy of Sciences of Ukraine, D. Sc. (Tech.), Senior Researcher, Director, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-4710-0343. E-mail: office.isi@nas.gov.ua
Liubeka Ihor Mykhailovych, Ph. D. Student, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
Head of Production Department, LLC “Crys-Teh”, Kalynova St., 12, office 7, Dnipro, 49051, Ukraine.
ORCID: 0009-0005-2440-5496
Kononenko Ganna Andriivna, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
LLC “Additive laser technology of Ukraine”, Serhiy Podolynskyi St., 31 b, Dnipro, Ukraine.
National Technical University “Dnipro Polytechnic”, Dmytra Yavornytskoho Ave., 19, Dnipro, 49005, Ukraine.
ORCID: 0000-0001-7446-4105. E-mail: perlit@ua.fm
Podolsky Rostyslav Viacheslavovych, Ph. D., Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
LLC “Additive laser technology of Ukraine”, Serhiy Podolynskyi St., 31 b, Dnipro, Ukraine.
ORCID: 0000-0002-0288-0641. E-mail: rostislavpodolskij@gmail.com
Safronova Olena Anatoliivna, Junior Researcher, Ph. D. Student, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-4032-4275. E-mail: safronovaaa77@gmail.com
Agarkov Kostiantyn Volodymyrovych, Head of Production Department, LLC “Crys-Teh”, Kalynova St., 12, office 7, Dnipro, 49051, Ukraine. ORCID: 0009-0005-2440-5496
OBTAINING TeO2 SINGLE CRYSTAL FOR ACOUSTO-OPTIC APPLICATIONS: RAW MATERIALS, GROWTH PROCESS, AND PROPERTIES. (REVIEW)
Abstract. TeO₂ crystals, widely recognized for their exceptional acousto-optic and optical properties, are essential materials in modern spectroscopic, telecommunications, and defense technologies. This review highlights the key aspects of TeO₂ crystal research, including raw material preparation, growth methods, and characterization of their properties. Currently, researchers are focused on two major directions: enhancing the efficiency of existing growth techniques and addressing the challenges posed by scaling up the size of high-quality crystals. TeO₂ crystal growth methods, such as the Czochralski, Bridgman, and hydrothermal processes, face significant challenges, including sensitivity to thermal gradients and the need for high-purity raw materials. The presence of impurities, such as Fe and Pt, strongly influences the optical and structural quality of the crystals. Additionally, the formation of defects, such as bubbles and inclusions, remains a critical issue. This review emphasizes the importance of developing new furnace designs, optimizing thermal conditions, and implementing innovative growth strategies to achieve high-quality crystals suitable for industrial applications. The scalability of TeO₂ crystals remains a key challenge that demands further exploration, particularly for their use in large-scale acousto-optic devices.
Key words: acousto-optics, single crystals, tellurium dioxide, crystal growth, Czochralski Method.
DOI: https://doi.org/10.52150/2522-9117-2024-38-542-565
For citation: Babachenko, O. I., Liubeka, I. M., Kononenko, G. A., Podolskyi, R. V., Safronova, O. A. & Agarkov K. V. (2024). Obtaining TeO2 single crystal for acousto-optic applications: raw materials, growth process, and properties. (Review). Fundamental and applied problems of ferrous metallurgy, 38, 542-565. https://doi.org/10.52150/2522-9117-2024-38-542-565
Reference
- Hurina, H. I. (2019). Khalkoheny ta yikhni pokhidni [Chalcogens and their origins]. KhNUMG im. O. M. Beketova
- Goldfarb, R. J., Berger, B. R., George, M.W. & Seal, II R. R. (2017). Tellurium: Chapter R of Critical Mineral Resources of the Unites States‐ Econmonic and Environmental Geology and Prospects for Future Supply. Reston, Va: USGS, 1-40. https://doi.org/10.3133/pp1802R
- Tellurium. Supply and Applications,February 2019, Conference: SME Annual Meeting At: Denver, Colorado. URL: https://www.researchgate.net/publication/330986012_Tellurium_Supply_and_Applications
- Pei, J., Cai, B., Zhuang, H.-L. & Li, J.-F. (2020). Bi2Te3-based applied thermoelectric materials: research advances and new challenges. Natl Sci Rev., 7(12), 1856. https://doi.org/10.1093/nsr/nwaa259
- Bibin, J. & Varadharajaperumal, S. (2023). Comprehensive Review on CdTe Crystals: Growth, Properties, and Photovoltaic Application. The Physics of Metals and Metallography, 124, 1795–1812. https://doi.org/10.1134/S0031918X2110094X
- Photon-counting CT – Siemens Healthineers. Siemens Healthineers | Corporate Home. URL: https://www.siemens-healthineers.com/computed-tomography/ct-technologies-and-innovations/photon-counting-ct
- Thomas, P. A. (1988). Solid State Physics The crystal structure and absolute optical chirality of paratellurite, α-TeO2C. Journal of Physics, 21, 4611. https://doi.org/10.1088/0022-3719/21/25/009
- Beyer, H. (1967). Refinement of the Crystal Structure of Tellurite, the Orthorhombic TeO2 Z. Kristallogr., 124, 228–237
- Blanchandin, S., Marchet, P., Thomas, P., Champarnaud-Mesjard, J. C., Frit, B. & Chagraoui, A. (1999). New investigations within the TeO2-WO3 system: phase equilibrium diagram and glass crystallization. Journal of Materials Science, 34, 4285–4292. https://doi.org/10.1023/A:1004667223028
- Champarnaud-Mesjard, C., Blanchandin, S., Thomas, P., Mirgorodsky, A. P., Merle-Mejean, T. & Frit, B. (2000). Crystal structure, Raman spectrum and lattice dynamics of a new metastable form of tellurium dioxide: γ-TeO2. Journal of physics and chemistry of solids, 61, 1499
- Beaudrya, J.-N., Greniera, S., Amratea, S., Mazzerab, M. & Zappettini, A. (2012). Synthesis of high purity, stoichiometric controlled, TeO2 powders. Materials Chemistry and Physics, 133, 804–807. https://doi.org/10.1016/j.matchemphys.2012.01.097
- Arnaboldia, C., Brofferio, C. & Bryant, A. and others. (2010). Production of high purity TeO2 single crystals for the study of neutrinoless double beta decay. Journal of Crystal Growth. 312(20), 2999-3008. https://doi.org/10.1016/j.jcrysgro.2010.06.034
- Arlt, G. & Schweppe, H. (1968). Paratellurite, a new piezoelectric maternal. Solid State Communications, 6(11), 783–784
- Liebertz, J. (1969). Einkristallzüchtung von Paratellurit (TeO2). Kristall Und Technik, 4(2), 221–225
- Miyazawa, S. & Iwasaki, H. (1970). Single Crystal Growth of Paratellurite TeO2. Japanese Journal of Applied Physics, 9(5), 441–445.
- Miyazawa, S. & Kondo, S. (1973). Preparation of paratellurite TеO2. Mat. Res. Bull. 8, 1215-1222
- Miyazawa, S. (1980). Fluid-flow effect on gas-bubble entrapment in czochralski-grown oxide crystals. Journal of Crystal Growth, 49, 515–521
- Otsi, L., Hartmann, E. & Vajna, B. (1985). The growth of TeO2 crystals from the boiling solution. Acta Physica Hungarica, 57(3-4), 295-301
- Han, L., Liu, C., Wang, X., Li, F., Fan, C. & Zhang, J. (2024). Low-temperature aqueous solution growth of the acousto-optic TeO2 single crystals. Mater. Adv., 5, 3022-3028. https://doi.org/10.1039/D4MA00058G
- Bonner, W. A., Singh, S., Van Uitert, L. G. & Warner, A. W. (1972). High quality tellurium dioxide for acousto-optic and non-linear applications. Journal of Electronic Materials, 1, 154–164. https://doi.org/10.1007/BF02660359
- Uchida, N. & Ohmachi, Y. (1969). Elastic and Photoelastic Properties of TeO2 Single Crysta. Journal of Applied Physics, 40, 4692-4695
- Veber, P., Mangin, J., Strimer, P., Delarue, P., Josse, C. & Saviot, L. (2004). Bridgman growth of paratellurite single crystals. Journal of Crystal Growth, 270, 77–84
- Chu, Y., Li, Y., Ge, Z., Wu, G. & Wang, H. (2006). Growth of the high quality and large size paratellurite single crystals. Journal of Crystal Growth, 295, 158–161
- Kokh, A. E., Shevchenko, V. S., Vlezko, V. A. & Kokh, K. A. (2013). Growth of TeO2 single crystals by the low temperature gradient Czochralski method with nonuniform heating. Journal of Crystal Growth, 384, 1–4. https://doi.org/10.1016/j.jcrysgro.2013.08.027
- Dovhyi, Ya. O., Kost, Ya. P., Mankovska, I. H. & Solskyi, I. M. (2007). Otsinka shyryny hiroaktyvnoi eksytonnoi zony krystala TeO2 [Estimation of the width of the gyroactive exciton zone of the crystal TeO2]. Physics and chemistry of solids, 8(3), 481-485
- Uchino, T. & Yoko, T. J. (1996). Ab initio cluster model calculations on the vibrational frequencies of TeO2 glass. Journal of Non-Crystalline Solids, 204(3), 243-252
- Ozer, Z., Mamedov, A. M. & Ozbay, E. (2016). BaTiO3 and TeO2 based gyroscopes for guidance systems: FEM analysis. Ferroelectrics, 497(1), 15-23. https://doi.org/10.1080/00150193.2016.1160726
- Uchida, N. (1971). Optical Properties of Single-Crystal Paratellurite (TeO2). Phys. Rev. B 4, 3736
- Pilgun, Yu. V. & Smirnov, Ye. M. (2010). Broadband acoustooptic diffraction of two-wavelength light in paratellurite. Ukr. J. Phys. Opt., 11, 28-43
- Dovhyj, Ya. O., Kost, Ya. P. & Man’kovska, I. G. (2008). Oscillator-oscillator interactions and the parameters of spatial dispersion in α-TeO2 and α-SiO2. Ukr. J. Phys., 53(1), 69-73
- TeO2 material properties. Products. URL: http://crys-teh.com/Products/ (date of access: 03.12.2024)
