DOI: 10.52150/2522-9117-2024-38-431-454
Parusov Eduard Volodymyrovych, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-4560-2043. E-mail: tometal@ukr.net
Chuiko Ihor Mykolaiovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-4753-614X. Email: ferrosplav@ukr.net
Oliinyk Eduard Vadymovych, Ph. D. Student, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-3366-3746. Email: ediknsk@gmail.com
Parusov Oleh Volodymyrovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-9879-6179. Email: termet@ukr.net
ANALYSIS OF TRENDS AND PROBLEMS OF THE PRODUCTION OF LOW-CARBON Cr-Mo-V STEEL WIRE ROD AND WIRE FOR WELDING PURPOSES
Abstract. High temperature resistant structural Cr-Mo and Cr-Mo-V steels have existed for more than a century and have been used with great success in the energy and chemical industries. Typical products for these industries are boilers, heaters, heat exchangers, reactors, gas turbines, hydrocrackers, high pressure vessels, etc. For welding such steels in an environment of protective gases and under a flux using a welding wire diam. 1.2–3.0 mm from low-carbon Cr-Mo-V steels, typical representatives of which include CrMoV1Si or Sv-08KhGSMFA and their analogues and modifications. A separate area of use of this wire is the recovery and repair of parts operating under conditions of abrasive wear by the surfacing method. In addition, this wire has prospects for successful application in wire-arc additive manufacturing technologies (3D printing). For the production of such a wire, as a metallurgical billet, is using the wire rod of diameter 5.5 mm, which, along with other consumer properties, should have high manufacturability during deep cold deformation by drawing by modern high-performance equipment. According to the results of the analysis of scientific and technical sources, the work summarizes the modern trends and problems in the production of low-carbon Cr-Mo-V steel wire rod and wire for welding purposes, a number of issues regarding the current requirements of regulatory documentation and specifications of the best global and domestic manufacturers of alloyed steels wire rod are considered, and the main target indicators of the quality of the corresponding metal products are determined, taking into account the characteristics of the welding materials themselves. In order to successfully solve the urgent problem of increasing the deformability of products made of low-carbon Cr-Mo-V steels for welding purposes, a set of scientific and practical tasks has been defined, the solution of which will significantly supplement the database of previously obtained results with new knowledge about the influence of the alloying system on the course of phase-structural transformations and complex of mechanical properties of wire rod. The results of the relevant research will form the basis for the creation of new technological solutions for the controlled management of the structure formation processes of the studied steels and will ensure the production of welding materials at reduced material costs, the production of which is currently absent in Ukraine.
Key words: wire rod, welding wire, alloy steel, structure, mechanical properties
DOI: https://doi.org/10.52150/2522-9117-2024-38-431-454
For citation: Parusov, E. V., Chuiko, I. M., Oliinyk, E. V., & Parusov, O. V. (2024). Analysis of trends and problems of the production of low-carbon Cr-Mo-V steel wire rod and wire for welding purposes. Fundamental and applied problems of ferrous metallurgy, 38, 431-454. https://doi.org/10.52150/2522-9117-2024-38-431-454
References
1. Anokhov, A. E. (2021). On some features of repair welding without heat treatment of power-generating equipment made of pearlite steels. Power Technol Eng, 55, 613-619. http://doi.org/10.1007/s10749-021-01406-z
2. Hilkes, J., & Gross, V. (2013). Welding CrMo steels for power generation and petrochemical applications – Past, present and future. Biuletyn Instytutu Spawalnictwa, (2), 11-22. https://www.scribd.com/document/218810353/02-Hilkes-Gross-Welding-of-CrMo-Steels-for-Power-Generation-and-Petrochemical-Applications
3. Venkata Rao, R., & Kalyankar, V. D. (2013). Experimental investigation on submerged arc welding of Cr–Mo–V steel. Int Jour Adv Manuf Tech, 69(1-4). http://doi.org/10.1007/s00170-013-5007-9
4. KOBE STEEL LTD. (2015). Arc welding of specific steels and cast irons
5. Abe, F. (2008). Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mater, 9, 013002. http://doi.org/10.1088/1468-6996/9/1/013002
6. Hayashi, T., Sarosi, P. M., Schneibel, J. H., & Mills, M. J. (2008). Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Mater, 56, 1407-1416. http://doi.org/10.1016/j.actamat.2007.11.038
7. Martin, J. W. (1980). Micromechanisms in particle-hardened alloys. Cambridge University Press.
8. Efimenko, N. G., & Artyomova, S. V. (2020). Welding of defects in cast cases of turbines with pearlite electrodes without heating and thermal processing. PASТ, 4(128), 84-88. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2020_4/article_2020_4_84.pdf
9. Vujnovic, L., Perunicic, V., Sijacki Zeravcic, V. M., & Bakic, G. M. (2009, 16-21 October). Welding flaws of pipeline heat resistant steels. Trends in the Development of Machinery and Associated Technology (TMT 2009), 13th International Research / Expert Conference, Tunisia, 917-920. URL: https://www.tmt.unze.ba/zbornik/TMT2009/230-TMT09-263.pdf
10. Dmitrik, V. V., Grinchenko, E. D., & Syrenko, T. O. (2011). The structure of the superheated region of the heat-affected zone of the welded joint in heat-resisting pearlitic steels. Welding International, 25(11), 868-871. http://doi.org/10.1080/09507116.2011.581425
11. Shang, C., Wang, Q., Wang, X., Jia, Y., Wu, J., Yang, S., Guo, J., & Zheng, L. (2016). Practice of JCO welding process for Cr-Mo series heat-resistant pearlite steel pipe. Steel Pipe, 45(4), 18-22
12. DSTU EN ISO 21952:2015. Zvariuvalni materialy. Droty elektrodni, droty, prutky ta naplavlenyi metal dlia duhovoho zvariuvannia zharomitsnykh stalei u zakhysnykh hazakh. Klasyfikatsiia [Welding materials. Wire electrodes, wires, rods and filler metal for arc welding of heat-resistant steels in shielding gases. Classification] (EN ISO 21952:2012, IDT; ISO 21952:2012, IDT) [In Ukrainian]
13. DSTU EN ISO 3580:2019. Zvariuvalni materialy. Elektrody z pokryttiam dlia ruchnoho duhovoho zvariuvannia zharomitsnykh stalei. Klasyfikatsiia [Welding materials. Covered electrodes for manual arc welding of heat-resistant steels. Classification] (EN ISO 3580:2017, IDT; ISO 3580:2017, IDT) [In Ukrainian]
14. GOST 2246-70. Provoloka stalnaia svarochnaia. Tekhnicheskie usloviia [Steel welding wire. Technical conditions] (reissue July 1993) [In Russian]
15. Prikhod’ko, E. V. (1995). Methodology for determining the parameters of directed interatomic interaction in molecules and crystals. Metallophysics and New Technologies, (11), 54-60
16. Prikhod’ko, E. V., & Tohobitskaia, D. N. (2017). The properties of metallurgical melts are a consequence of their composition and structure. Modern Problems of Physical Materials Science, (26), 124-138
17. Turyk, E. V. (2014). Manufacturing defects in welding consumables influencing the quality of welded joints. The Paton Welding Journal, (6-7), 103-106. http://doi.org/10.15407/tpwj2014.06.22
18. Oliinyk, E. V., Parusov, E. V., & Chuiko, I. M. (2024, 10-11 April). Teoretychni ta tekhnolohichni zasady znemitsniuiuchoho termomekhanichnoho obroblennia stalevoho prokatu zvariuvalnoho pryznachennia [Theoretical and technological principles of softening thermomechanical processing of steel wire rod for welding purposes]. Technologies in Metallurgy and Machine building – ITMM 2024, Dnipro, Ukraine, 57-64. UDUNT. [In Ukrainian]. http://doi.org/10.34185/1991-7848.itmm.2024.01.010
19. Parusov, V. V., Sychkov, A. B., & Parusov, E. V. (2012). Teoreticheskie i tekhnolohicheskie osnovy proizvodstva vysokoeffektivnykh vidov katanki [Theoretical and technological foundations for the production of highly efficient types of wire rod]. ART-PRESS. [In Russian]
20. Parusov, E. V., Sychkov, A. B., Gubenko, S. I., & Chuiko, I. N. (2016). Analiz tekhnolohicheskikh osobennostei okhlazhdeniia buntovoho prokata na linii Stelmor OAO «MMZ» [Analysis of technological features of cooling rolled metal on the Stelmor line of OJSC MSW]. Scientific Works of VNTU, (3), 1-8. [In Russian]
21. Laber, K. B. (2024). Analysis of the uniformity of mechanical properties along the length of wire rod designed for further cold plastic working processes for selected parameters of thermoplastic processing. Materials, 17(4), 905. http://doi.org/10.3390/ma17040905
22. Parusov, E. V., Sychkov, O. B., Gubenko, S. I. Malashkin, S. O., & Sahura, L. V. (2017). Pro efektyvni shliakhy vdoskonalennia rezhymiv rehulovanoho povitrianoho okholodzhennia buntovoho prokatu v promyslovykh umovakh [On effective ways to improve the modes of regulated air cooling of wire rod in industrial conditions]. Scientific Works of VNTU, (3), 1–9. [In Ukrainian]
23. Sychkov, A. B., Parusov, V. V., Nesterenko, A. M., Zhukova, S. Yu., Zhigarev, M. A., Perchatkin, A. V., Peregudov, A. V., & Chuiko, I. N. (2009). Struktura i svoistva katanki dlia izhotovleniia elektrodov i svarochnoi provoloki [Structure and properties of wire rod for the manufacture of electrodes and welding wire]. Poligrafist. [In Russian]
24. Das, S., Talukdar, S., Kumar, A., & Mukhopadhyay, G. (2020). Metallurgical investigation of welding wire rod grade during processing. Engineering Failure Analysis, 118, 104884. http://doi.org/10.1016/j.engfailanal.2020.104884
25. Asati, B., Shajan, N., & Arora, K. S. (2023). Development of high strength welding consumable for arc welding carbon steels. Materials Today: Proceedings. http://doi.org/10.1016/j.matpr.2023.07.007
26. Zhao, H., Wang, S., Gao, J., Qi, J., Su, R., Zhang, H., Chen, H., Tian, Z., & Bai, L. (2022). Cause analysis of V-shaped crack pairs on drawn welding wire surface of ER70S-6 steel. Metall. Res. Technol, 119(5), 510. http://doi.org/10.1051/metal/2022070
27. Parusov, V. V., Sychkov, A. B., Chuiko, I. N., Parusov, O. V., Zhukova, S. Yu., Zhigarev, M. A., & Perchatkin, A. V. (2009). Vliianie khimicheskoho sostava na strukturu, svoistva i tekhnolohicheskuiu plastichnost katanki svarochnoho naznacheniia iz stali Sv-08HNM [The influence of chemical composition on the structure, properties and technological plasticity of wire rod for welding purposes made of Sv-08HNM steel]. Theory and Practice of Metallurgy, (1-2), 98-102. [In Russian]
28. Parusov, V. V., Chuiko, I. N., Sychkov, A. B., Parusov, O. V., & Parusov, E. V. (2013). Vliianie rezhimov termomekhanicheskoi obrabotki na kachestvennye kharakteristiki katanki iz stali marki 30KhGSA i ee tekhnolohichnost [The influence of thermomechanical processing modes on the quality characteristics of wire rod made of 30KhGSA steel grade and its manufacturability]. Construction. Material Science. Mechanical Engineering, (67), 25-27. [In Russian]
29. Parusov, V. V., Chuiko, I. N., Parusov, O. V., Sychkov, A. B., Zhigarev, M. A., Perchatkin, A. V., & Zhukova, S. Yu. (2009). Otzenka tekhnolohichnosti pererabotki katanki iz lehirovannykh stalei svarochnoho naznacheniia na metiznom peredele [Evaluation of the processability of processing wire rod from alloyed steels for welding purposes in the hardware processing section]. Construction. Material Science. Mechanical Engineering, 48(2), 8-11. [In Russian]
30. Tulenkov, K. I., Zolotnikov, M. I., & Bobyleva, S. F. (1956). Mekhanicheskie svoistva stalnoi naklepannoi provoloki [Mechanical properties of cold-worked steel wire]. Stal, (9), 821-825. [In Russian]
31. Gubenko, S. I., & Parusov, V. V. (2006). Deformatsiia metallicheskikh materialov [Deformation of metallic materials]. ART-PRESS. [In Russian]
32. Gubenko, S. (2020). Physical nature of plasticity and strengthening of metals during deformation. Beau Bassin. LAP LAMBERT Academic publishing
