DOI: 10.52150/2522-9117-2024-38-415-430
Medvediev Mykhailo Ivanovych, D. Sc. (Tech.), Senior Researcher, Ukrainian State University of Science and Technologies, Lazaryana St., 2, Dnipro, 49010, Ukraine. ORCID: 0000-0002-1230-420X. Email: medvedev@metal-forming.org
Bobukh Oleksandr Serhiiovych, Ph. D. (Tech.), Associate Professor, Ukrainian State University of Science and Technologies, Lazaryana St., 2, Dnipro, 49010, Ukraine. ORCID: 0000-0001-7254-3854. Email: bobukh@metal-forming.org
FEATURES OF THE TECHNOLOGY OF MANUFACTURING PIPES FROM HEAT-RESISTANT STEEL AND HEAT-RESISTANT ALLOYS
Abstract. The purpose of the work. Improvement of the production technology of seamless hot-pressed pipes from heat-resistant steels and alloys of the austenitic class, as well as titanium and zirconium alloys. Development of technical solutions for determining rational temperature-deformation and speed modes of pipe pressing and expansion of pre-drilled blanks, which ensure compliance with the requirements of regulatory documents, namely requirements of foreign standards (ASTME, DIN, etc.), GOST, DSTU, as well as a reduction in the consumption rate of the metal. Research methodology. When determining the mathematical dependence of the rational temperature-deformation parameters of pipe pressing and expansion of pre- drilled blanks, data from experimental studies of pipe pressing made of various steels and alloys were used. Results. A number of technical solutions have been developed to determine the mathematical dependence of the heating temperatures of the workpieces on the deformation parameters (coefficient of extraction during pressing of pipes and expansion of pre- drilled workpieces), pressing speed, temperature of maximum plasticity), dependence of the size of the austenite grain on the parameters of the pressing technology (temperature of heating the workpieces, geometric parameters of the workpieces and tool, temporary tear resistance) and others. Scientific novelty. Rational temperature-deformation regimes for pressing pipes made of heat-resistant and heat-resistant alloys for the aviation industry are determined. Practical significance. The developed regimes were implemented during the development of pipe production technology at domestic and foreign press installations to ensure the requirements of regulatory documentation.
Key words: heat-resistant and heat-resistant steels, alloys, pipe pressing, plasticity temperature, extraction coefficient.
DOI: https://doi.org/10.52150/2522-9117-2024-38-415-430
For citation: Medvedev, M. I., & Bobukh, O. S. (2024). Features of the technology of manufacturing pipes from heat-resistant steel and heat-resistant alloys. Fundamental and applied problems of ferrous metallurgy, 38, 415-430. https://doi.org/10.52150/2522-9117-2024-38-415-430
References
1. Druian, V. M., Huliaiev, Yu. H., & Chukmasov, S. O. (2000). Teoriia ta tekhnolohiia trubnoho vyrobnytstva. RVA “Dnipro-VAL”
2. Medvediev, M. I., Frolov, Ya. V., Bobukh, O. S. (2023). Presuvannia trub z nikelevykh i tytanovykh splaviv(pytannia teorii i tekhnolohii)
3. Gulyaev, Y. G., Druyan, V. M., & Shifrin, E. I. (2002). Fistula ferro. Productio, application, assortment: Reference book. RIA “Dnipro-VAL”
4. Medvediev, M., Frolov, Y., Andreiev, V., Bobukh, O., & Vovk, A. (2019). Experimental estimation of maximal ductility and flow curves of titanium alloys with hot-torsion tests. Metalurhiina ta hirnychorudna promyslovist, (5-6), 114-122. https://doi.org/10.34185/0543-5749.2019-5-6-114-122
5. Pernis, R. Bidulska, Y., Kvackaj, T., & Pokorniy, I. Application of the torsion test in calculating the extrusion force. Archives of metallyrgy and materials, 56(1), 81-85.https://doi.org/102478/v10172-011-0009-9
6. Pintão, C. A., Corrêa, D. R., & Grandini, C. R. (2019). Torsion modulus as a tool to evaluate the role of thermo-mechanical treatment and composition of dental Ti-Zr alloys. Journal of Materials Research and Technology, 8(5), 4631-4661. https://doi.org/10/1016/j.jmrt.2019.08.007
7. Pintão, C. A. F., Correa, D. R. N. & Grandini, C. R. (2017). Torsion modulus using the technique of mechanical spectroscopy in biomaterials. J Mech Sci Technol., 31, 2203–2211. https://doi.org/10.1007/s12206-017-0416-6
8. Yang L. H., & Wu L. Z. (2011). Determination of hardening coefficient of large strain constitutive model based on torsion tests. Advanced materials research, 197-198, 1528-1531. https:doi.org/10.4028/www.scientific.net/AMR.197-198.1528
9. Lotkov A., Grishkov V., & Baturin A. et al. (2019). Yield Stress and Reversible Strain in Titanium Nickelide Alloys after Warm Abc Pressing. Materials, 12, 3258 .https://doi.org/10.3390/ma12193258
10. Pat. 125844 Ukraine. (2018). Sposib poperednoi otsinky deformovnosti metallu dlia hariachoho presuvannia trub, Bul. No. 10
11. Pat. 148925 Ukraine. (2021). Sposib presuvannia trub z austenitnykh stalei. 12. Sposib vyhotovlennia trub z vazhkodeformivnykh metaliv, Bul. No. 39
12. Pat. 148267 Ukraine. (2021). Sposib vyhotovlennia trub z vazhkodeformivnykh metaliv, Bul. No. 29
13. Pat. 151552 Ukraine. (2022). Sposib vyhotovlennia trub z vazhkodeformivnykh metaliv, Bul. No. 32
14. Pat. 155960 Ukraine. (2024). Sposib vyhotovlennia trub zkoroziinostiikykh stalei i splaviv, Bul. No. 17
