DOI: 10.52150/2522-9117-2024-38-292-307

Tohobytska Daria Mykolaivna, D. Sc. (Tech.), Professor, Head of Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-6413-4823. E-mail: dntog@ukr.net

Povorotnia Iryna Romanivna, Ph. D. (Tech.), Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID 0000-0001-5872-7403

Piptyuk Vitalii Petrovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-2915-1756

Kuksa Oleh Volodymyrovych, Ph. D. (Tech.), Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-6268-0692

COMPREHENSIVE ASSESSMENT OF THE PROPERTIES OF ADDITIVES AS A NECESSARY COMPONENT OF THE INTELLIGENT DECISION-MAKING SYSTEM IN THE PROOFING OF STEEL AT THE LADLE-FURNACE INSTALLATION

Abstract. The information basis for theoretical and applied metallurgy in developing solutions aimed at improving existing and developing fundamentally new technological schemes for the manufacture of high-quality metal products are problem-oriented programs, which should be based on a reliable database and models. Analysis of modern specialized computer programs indicates a significant lack of such models for multi-component melts, which are the main participants in metallurgical processes – metal, slag, additives. The main task of the work is to create a set of basic models for predicting the primary physicochemical and thermophysical properties of metal melts in order to directionally form high-quality metal and increase its competitiveness. The original concept of directional chemical bonding was chosen as the basis for modeling, the core of which is the consideration of metal melts as chemically unified systems, rather than a mechanical mixture of constituent elements and taking into account the contribution of all components, even in small concentrations. The work uses an important information component, which is a database on the properties of metallurgical melts, which is continuously updated with modern data and contains the results of our own and industrial experimental research and literature search (articles, patents, inventions, scientific developments, monographs). The significance of databases is undeniable and requires their introduction to the interdisciplinary and interuniversity level with open access, as a separate instance to promote the development of the scientific level and capabilities of scientists. Adequate mathematical models have been developed based on the integral parameters of interatomic interaction, which ensured high accuracy of the operational forecast (R2≥0.9). The results of the research are recommended for use in scientific research and industrial conditions for the purpose of directed formation of the composition and properties of smelting products, as well as reducing energy costs, reducing defects by making operational technological decisions by integrating the developed models into automated scientific research systems and automated control systems for the technological process of steelmaking.

Key words: metal, additives, ferroalloys, parameters of interatomic interaction, modeling, physicochemical properties, thermophysical properties, ladle furnace (LF) installation

DOI: https://doi.org/10.52150/2522-9117-2024-38-292-307

For citation: Togobytska, D. M., Povorotnia, I. R., Piptyuk, V. P., & Kuksa, O. V.  (2024). Comprehensive assessment of the properties of additives as a necessary component of the intelligent decision-making system in the proofing of steel at the ladle-furnace installation. Fundamental and applied problems of ferrous metallurgy, 38, 292-307. https://doi.org/10.52150/2522-9117-2024-38-292-307

References

  1. Ponomarenko, A. G. (1974). Voprosi termodinamiki faz peremennogo sostava, imeyushchikh kollektivnuyu elektronnuyu fazu. I. Svobodnaya energiya fazi. Zhurnal fizicheskoi khimii, 48(7), 1668 –1671
  2. Kharchenko, A. V, & Ponomarenko, A. G. (2003). Eksperimentalnie osnovaniya termodinamicheskoi modeli kollektivizirovannikh elektronov. Sb. nauchnikh trudov DonNTU. Seriya: Metallurgiya, 17 – 24
  3. Kharchenko, A. V., Ponomarenko, A. G., Khrapko, S. A., & Inozemtseva, Ye. N. (1991). Razrabotka informatsionno-tekhnologicheskoi sistemi «FORVARD» dlya upravleniya metallurgicheskimi protsessami v realnom masshtabe vremeni. Izvestiya VUZov. Chernaya metallurgiya, (12), 89 – 91
  4. Kharchenko, A. V., Kovalev, V. L., Lichkonenko, N. V., & Lyashenko, R. P. (2019). Usovershenstvovanie sistemi kontrolya staleplavilnogo proizvodstva “Master”. Zbirnik naukovikh prats “Metalurgiya”, 2, 11–15
  5. Kharchenko, A. V. (2015). Optimizatsiya protsessa raskisleniya stali s primeneniem apparatno – programmnogo kompleksa “Master”. Zbіrnik naukovikh prats “Metalurgіya”, 1, 18–21
  6. Sinyakov, R. V. (2011). Razrabotka tekhnologii viplavki i vnepechnoi obrabotki stali s ispolzovaniem programmnogo kompleksa “DesigningMelt “. Sovremennaya elektrometallurgiya, 2, 34–37
  7. Kharchenko, A. V., Lichkonenko, N. V., & Moseiko, Yu. V. (2013). Vozmozhnosti i perspektivi ispolzovaniya programmi “Excalibur” v uchebnom protsesse. Zb. naukovikh prats ZDIA. Metalurgiya, 1, 169–175
  8. Kharchenko, A. V., Sinyakov, R. V., & Lichkonenko, N. V. (2017). Primenenie metoda khimicheskikh potentsialov Gibbsa v chernoi metallurgii. Zbirnik naukovikh prats “Metalurgiya”, 2,20–25
  9. Kharchenko, O. V. (2021). Dyferentsialni koefitsiienty zasvoiennia v kompiuternykh systemakh proiektuvannia i upravlinnia plavkoiu stali. Metal ta lyttia Ukrainy, (2), 30-37
  10. Togobitskaia, D. N., Shaper, M., Gridin, O., & Snigura, I. R. (2018). Kompiuternoe modelirovanie temperatur plavleniia i kristallizatsii splavov spetsialnogo naznacheniia. Stal, (6), 11 – 15
  11. Carlson, K. D. & Beckermann, C. (2012) Determination of solid fraction–temperature relation and latent heat using full scale casting experiments: application to corrosion resistant steels and nickel based alloys, International Journal of Cast Metals Research, 25(2), 75-92. https://doi.org/10.1179/1743133611Y.0000000023
  12. Sundman, B., Kattner, U. R., Palumbo, M. et al. (2015). OpenCalphad – a free thermodynamic software. Integr Mater Manuf Innov., 4, 1–15 https://doi.org/10.1186/s40192-014-0029-1
  13. Chattopadhyay, S. (1994). Computer Applications and Simulations in Ferroalloy Production. In: 4th Refresher Course on Ferro Alloys, January 12-14, 1994, Jamedepur
  14. Prikhodko, E. V. (1995). Effektivnost kompleksnogo legirovaniia stalei i splavov. Naukova dumka. 1995. 292 p.
  15. Prikhodko, E. V. (1986). O fiziko-khimicheskoi modeli struktury metallicheskikh rasplavov. Izv. AN SSSR Metally, (4), 20 – 26
  16. Prikhodko, E. V. (1995). Metallokhimiia mnogokomponentnykh system. Metallurgiia.
  17. Togobitska, D. and Belkova, A. (2024). New approach to evaluating the thermodynamic consistency of melts in the “Metal-Slag” system based on interatomic interaction parameters. Lithuanian Journal of Physics, 64(1), 58-71. https://doi.org/10.3952/physics.2024.64.1.6
  18. Togobitskaia, D. N., Piptiuk, V. P., Petrov, A. F., Grekov, S. V., Snigura, I. R., Likhachev, Iu. M., & Golovko, L. A. (2017). Bazy dannykh i modeli dlia ekspertnoi otsenki effektivnosti ispolzovaniia ferrosplavov pri proizvodstve stali. Fundamentalnye i prikladnye problemy chernoi metallurgii, 31, 150 – 165
  19. Tohobytska, D. M., Stepanenko, D. O., Bielkova, A. I., Petrov, A. P., & Likhachev, Yu. M. (2021). Bank danykh “Metalurhiia” – informatsiina osnova prohnozuvannia vlastyvostei fizyko-khimichnykh system ta yikh rozplaviv. Suchasni problemy metalurhii, 24, 140 – 148

Фундаментальные и прикладные проблемы черной металлургии
Logo