DOI: 10.52150/2522-9117-2024-38-232-252

Molchanov Lavr Serhiiovych, Ph. D. (Tech.), Head of Department, Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-6139-5956. E-mail: metall729321@gmail.com

Golub Tetiana Serhiivna, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-9269-2953. E-mail: isinasu.golubts@gmail.com

Semykin Serhii Ivanovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-7365-2259. E-mail: isisemykin@gmail.com

METHODOLOGICAL ASPECTS OF ANALYSIS AND INTERPRETATION OF THE RESULTS OF PHYSICAL MODELING OF THE PROCESSES OF INTERACTION OF GAS JETS WITH LIQUID PHASES OF AN OXYGEN-CONVERTER BATH

Abstract. The steel industry is an integral part of modern heavy industry and a base for other industries, as it provides structural materials, among which steel of various grades occupies an important place. In the world, a larger share of steel production falls on oxygen converter process. That fact determines the relevance of constant development and improvement of the process from both technological and environmental aspects. However, any innovation requires research and testing that cannot be carried out in industrial conditions due to the possibility of harming current production and wasting time and resources. Because of this, the direction of modeling the oxygen converter process is actively developing. Modeling can take place physically on cold models or high temperature models, or virtually using mathematical models. However, the latter require preliminary research on physical models to search for patterns that will become their basis. Thus, physical full-scale modeling is an integral basis and source of information about all processes that accompany the production of steel. However, each obtained result must be adequately interpreted. Thus, the paper proposes options for studying and interpreting the dynamic indicators of the blowing process based on the results obtained by physical modeling. The developed methods were used to evaluate various options for cold modeling using aqueous two-phase models, where water simulating liquid steel and other liquid simulating slag are used as model liquids; and high-temperature modeling on a real metal melt on a small scale. The dynamic features of the movement of phases during top blowing were established, that were determined using the specified modeling methods, namely the speed of movement of particles of one phase simulating slag when entering another phase simulating steel melt during blowing; movement of the bath surface depending on technological parameters and based on the results of high temperature modeling, the features of the pulsation of the blowing well, which creates by a jet of blowing gas, have been established.

Key words: oxygen-converter process, cold modeling, high temperature modeling, blowing, velocity of phase movement.

DOI: https://doi.org/10.52150/2522-9117-2024-38-232-252

For citation: Molchanov, L. S., Golub, T. S., & Semykin, S. I. (2024). Methodological aspects of analysis and interpretation of the results of physical modeling of the processes of interaction of gas jets with liquid phases of an oxygen-converter bath. Fundamental and applied problems of ferrous metallurgy, 38, 232-252. https://doi.org/10.52150/2522-9117-2024-38-232-252

References

1. Zhang, Y. C., Zhang, C. J., Zhu, L. G., & Zhou, Q. L. (2019). Numerical simulation of high Mach number oxygen lance under high oxygen pressure. Iron and Steel, 54, 32–38

2. Li, Q., Li, M.-M., Li, L., & Zou, Z.-S. (2013). Numerical analysis on oxygen jet characteristic for BOF convertor top-blown process based on CFD method. Journal of Northeastern University, 34(6), 828–831

3. Kemminger, A., Krause, F., & Odenthal, H.-J. (2022). CFD simulation of top-blown converters. Conference: 9th EOSC European Oxygen Steelmaking Conference At Aachen.

4. Wang, W., Yuan, Z., Matsuura, H., Zhao, H., Dai, Ch., & Tsukihashi, F. (2010). Three-dimensional Compressible Flow Simulation of Top-blown Multiple Jets in Converter. ISIJ International, 50(4), 491–500

5. Hu, S. Y., Zhu, R., & Dong, K. (2018). Numerical simulation research on flow in combined blown converter at steelmaking temperature. Chin. J. Eng, 40, 108–115

6. Wang, H., Zhu, R., Gu, Y. L., & Wang, C. J. (2014). Behavior of supersonic oxygen jet injected from four-hole lance during top-blown converter steelmaking process. Can. Metall. Q., 53, 367–380

7. Li, M. M., Li Q., Kuang, S. B., & Zou, Z. S. (2015). Coalescteriscs of supersonic jets from multi-nozzle oxygen lance in steelmaking BOF. Steel Res. Int., 86, 1517–1529

8. Krasnikov, К. S., & Lyzhov, N. V. (2021). Chislennye issledovania na matematicheskoj modeli vspenivania s inzhekciej gaza. [Numerical studies on a mathematical model of foaming with gas injection]. System technologies, 1(132), 23–30

9. Zhu, Sh., Zhao, Q., Li, X., Liu, Y. & Zhang, T. (2023). CFD Simulation of gas-slag-metal multiphase flow in a side-blown vortex smelting reduction reactor. Journal of Sustainable Metallurgy, 9, 1033–1049

10. Errson, M., & Tillander, A. (2018). Review on CFD simulation and modeling of decarburization processes. Steel Research International, 89(1)

11. Wei, J.‐H., & Zeng, L. (2012). Numerical simulation of fluid flow in bath during combined top and bottom blowing VOD refining process of stainless steel. Steel Research International, 83(11), 1053–1070

12. Wei, J.-H., He, Y., & Shi, G.-M. (2011). Mathematical modeling of fluid flow in bath during combined side and top blowing AOD refining process of stainless steel: Mathematical model of the fluid flow. Steel Research International, 82(6), 703–709

13. Singh, V., Kumar, J, Bhanu, C., Ajmani, S. K., & Dash, S. K. (2007). Optimization of the bottom tuyeres configuration for the BOF vessel using physical and mathematical modeling. ISIJ Int., 47(11), 1605–1612

14. Quiyoom, A., Golani, R., Singh, V., & Buwa, V. V. (2017). Effect of differential flow schemes on gas-liquid flow and liquid phase mixing in a Basic Oxygen Furnace. Chem. Eng. Sci., 73 (9), 373–377

15. Cherniatevych, A. G., Samohvalov, O. S., Sigarev, Ye. M., & Chubina, O. A. (2005). Matematuchna model gidrodynamiky procesu produvki shlakovoj vanny u porozhnyni konvertera [Mathematical model of hydrodynamics of the process of blowing the slag bath at an empty converter]. Mathematical modeling, 1(13), 76–78

16. Repossi, E., Rosso, R., & Verani, M. (2016). A phase-field model for liquid-gas mixtures: mathematical modelling and discontinuous Galerkin discretization. Modeling and scientific computing, 27,1–36

17. Misra, P., Deo, B., & Chhabra, R. (1998). Dynamic model of slag foaming in oxygen steelmaking converters. ISIJ International, 38(11), 1225–1232

18. Sigarev, Ye. N., Sokol, A. N., & Nedbajlo, N. N. (2016). Komputernoe modelirovanie teplovogo sostojania sistemy “garnisazh – furerovka” s uchetom neravnomernosti ee tolshchiny [Computer modeling of the thermal state of the “skull – lining” system taking into account the unevenness of its thickness]. Mathematical modeling, 2(35), 70–73

19. Brandaleze, E., Torresi, U., & Santini, L. (2018). A refractory wear predictive model developed for BOF converters. Scholars Journal of Engineering and Technology, 6(1), 7–13

20. Demete, J., Buľko, B., Demeter, P., & Hrubovčáková M. (2023). Evaluation of factors affecting the MgO–C refractory lining degradation in a basic oxygen furnace. MDPI, 13(22), 12473–12500

21. Gruber, D. (2004). Optimisation of the Lining Design of a BOF Converter by Finite Element Simulations. Steel research international, 75(7), 455–461

22. Paul, S., & Chosh, D. N. (1986). Model study of mixing and mass transfer rates of slag-metal in top and bottom blown converters. Metal Trans B, 17(3), 461–469

23. Ghosh, D. N., & Singh, R. P. (1988). Cold model study of mixing time in hybrid prosecc. Trans Iron Steel Inst. Japan, 28(8), 659–662

24. Ajmani, S. K., & Chatterjee, A. (2005). Cold model studies of mixing and mass transfer in steelmaking vessels. Ironmak. Steelmak, 32(6), 515–527

25. Choudhary, S. K., & Ajmani, S. K. (2006). Evaluation of bottom stirring system in BOF steelmaking vessel using cold model study and thermodynamic analysis. ISIJ Int, 46(8), 1171–1176

26. Singh, V., Lenka, S. N., Ajmani, S. K., Bhanu, C., & Pathak, S. (2009). A novel bottom stirring scheme to improve BOF performance through mixing and mass transfer modeling. ISIJ Int, 49(12), 1889–1894

27. Roth, C., Peter, M., Schindler, M., & Koch, K. (1995). Cold model investigation into the effects of bottom blowing in metallurgical resctors. Steel Res., 66(8), 325–330

28. Roth, C., Peter, M., Juhart, M., & Koch, K. (1999). Cold model investigations of fluid flows and mixing within top and combined blown in metallurgical process. Steel Res., 70(12), 502–507

29. Olivares, O., Elias, A., Sanchez, R., Diaz-Cruz, M., & Morales, R. D. (2002). Physical and mathematical models of gas-liquid fluid dynamics in LD converters. Steel Res., 73(2), 44–51

30. Oymo, D., & Guthrie, R. I. L. (1984). Mixing times in combination blowing process. Proceedings of the process technology conference, 45–52

31. Martin, M., Rendueles, M., & Diaz, M. (2005). Steel-slag mass transfer in steel converter, bottom and top/bottom combined blowing through cold model experiments. Chem.Eng.Res.Des., 83(9), 1076–1084

32. Wu, W., Bin, Yang L., Zheng, C. J., & Liu, L. (2010). Cold simulation of oxygen transfer rate in BOF. J Iron Steel Res., 17, 7–13

33. Koria, S.C., & George, A. (1988). Selection of bottom injection parameters in combined blown steelmaking. Ironmak. Steelmak., 15(3), 127–133

34. Koria, S. C., & Pal, S. (1991). Experimental study of the effect of gas injection parameters on the bath mixing intensity ibduced during steelmaking. Process. Metall., 62(2), 47– 53

35. Evestendt, M., & Medvedev, A. (2007). Cavity shape dynamical modeling and estimation in water model of the steel converter process. J Jpn. Soc. Exp. Mech., 7, 93–98

36. Cheslak, F. R., Nicholls, J. A., & Sichel, M. (1969). Cavities formed on liquid surfaces by impinging gaseous jets. J Fluid. Mech., 36(1), 55–63

37. Nordquist, A., Kumbhat, N., Jonsson, L., & Jonsson, P. (2006). The effect of nozzle diameter, lance height and flow rate on penetration depth in a top-blown water model. Steel Res. Int. vol. 77 (2). P. 82–90

38. Li, Q., Li, M., Kuang, S., Zou, Z. (2015). Numerical simulation of the interaction between supersonic oxygen jets and molten slag-metal bath in steelmaking BOF process. Metal Mater. Trans. B. vol. 46 (3). P. 1494–1509

39. Naito, K-I., Asahara, N., Kaizawa, A., Ogawa, Y., Kitagawa, I., & Inomoto, T. (2013). Behavior of top-blowing lance jets in BOF. Nippon Steel Tech. Rep., 104, 33–41

40. Lee, M. S., O’Rourke, S. L., & Molloy, N. A. (2003). Oscillatory flow in the steelmaking vessel. Scand. J Metall., 32(5), 281–288

41. Luoma, M. J., Fabritius, T. M. J., & Harkki, J. J. (2004). The effect of bottom nozzle configuration on the bath behavior in the BOF. ISIJ Int., 44(5), 809–816

42. Sabah, S., & Brooks, G. (2016). Study of cavity modes in BOF by analysis of sound. Ironmak. Steelmak, 43(6), 473–480

43. Shi, J., Luo, X., Li J., & Jiang, J. (2016). Investigation on penetration model of shaped charge jet in water. Mod. Phys. Lett. B., 30(2), 1–15

44. Kamkina, L. V., Mishalkin, A. P., Kamkin, V. Yu., Mianovska, Ya. V., Dvorkovyj O. I., & Isaeva L. Ye. (2022). Modeluvannia vplyvu rezhyzmu produvannia vanny na masoobminni process ta shlakoutvorannia u kysnevomu konverteri [Simulation of the bath blowing mode in the mass exchange process and slag removal in the sour converter]. Theory and practice of metallurgy, (1), 27–37

45. Gerlach, F., & Frohberg, M. G. (1993). Mass transfer in bottom blowing cold model converter. Steel Res., 64(1), 7–14

46. Deo, B., Overbosch, A., Snoeijer, B., Das, D., & Srinivas, K. (2013). Control of slag formation, foaming, slopping and chaos in BOF. Trans. IndianInst. Met. Dec. , 66(5–6), 543–554

47. Ascanio, G. (2015). Mixing time in stirred vessels: a review of experimental techniques. Chin. J Chem. Eng., 23(7), 1065–1076

48. Melton, L. A., Lipp, C. W., Spredling, R. W., & Paulson, K. A. (2002). Determination of mixing time through color changes. Chem. Eng. Comm., 189(3), 322–228

49. Ascanio, G., Foucault, S., & Tanguy, P. A. (2004). Time-periodic mixing of shear-thinning fluids. Chem. Eng. Res. Des. Sep., 82(9), 1199–1203

50. Kuo, T. Y., & Kuo, J. C. (2011). Determination of mixing time in a ladle-refining process using optical image processing. ISIJ Int., 510(10), 1597–1600

51. Wuppermann, C., Giesselmann, N., Ruckert, A., Pfeifer, H., Odenthal, H. J., & Hovestadt, E. (2012). A novel approach to determine the mixing time in a water model of an AOD converter. ISIJ Int, 52(10), 1817–1823

52. Kumar, A., Malathi, M., Godiwalla, K. M., Chacko, E. Z., Ajmani, S. K., & Ranganathan, S. (2014). Cold model study of submerged peripheral gas bubbling from a cylindrical dispenser. ISIJ Int., 54(10), 2239–-2247

53. Rosseburg, A., Fitschen, J., Wutz, J., Wucherpfennig, T., & Schluter, M. (2018). Hydrodynamic inhomogeneties in large scale stirred tanks – influence on mixing time. Chem. Eng. Sci., 188, 208–220

54. Chen, C., Rui, Q., & Cheng, G. (2013). Effect od salt tracer amount on the mixing time measurement in a hydrodynamic model of gas-stirred ladle system. Steel Res. Int., 84(9), 900–907

55. Martin, M., Rendueles, M., & Diaz, M. (2005). Global and local mixing determinations for steel converter analysis. Chem. Eng. Sci., 60(21), 5781–5791

56. Stisovic, T., & Koch, K. (2002). Bottom blowing investigations on a cold model reactor to optimize mixing behavior in metallurgical processes. Steel Res., 73(9), 373–377

57. Martin, M., & Diaz, M. (2002). Gas –liquid and gas-liquid-liquid reactors with top and bottom blowing:I. Fluid dynamic regimes. Chem. Eng.Common., 189(2), 543–570

58. Martin, M., Rendueles, M., & Diaz, M. (2004). Emulsion analysis in a gas/liquid reactor with top blowing. Can. J Chem. Eng., 82, 249–255

59. Kawabe, Y., Uddin, M. A., Kato, Y, Seok, M. O., & Lee, S. B. (2017). Correlation between liquid/liquid and gas/liquid mass transfer in top/bottom blowing converter. ISIJ Int., 57(2), 296–303

60. Cao, L. L. (2019). Modeling of gas-slag-metal multiphase fluid during basic oxygen steelmaking process. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China.

61. Balkos, T., Batham, J., Russo, T., Fash, R., & Howanski, B. (2006). Cold shroud-boosting converter performance. Proceedings of the 6th European Oxygen Steelmaking Conference, Aachen, Germany, 26–28 June 2006. P. 179–185.

62. Cherniatevych, A. G., Vakulchuk, V. V., Molchanov, L. S., Yushkevich, P. O., Sigarev, Ye. N., Chubin, K. I., & Chubina, Ye. A. (2017). Vysokotemperaturnoe modelirovanie produvki konverternoj vanny s ispolzovaniem dvuhjarusnoj kislorodnoj furmy [High temperature modeling of converter bath blowdown using a double-level oxygen lance]. Theory and practice of metallurgy, (3-4), 79–85

63. Cherniatevych, A. G., Sigarev, Ye. N., & Cherniatevych, I. V. (2010). Novye razrabotki konstrukcij kislorodnyh furm I sposobov produvki vanny 160-t konverterov PJSC “ArcelorMittal Kryvyj Rig” [New developments in the design of oxygen tuyeres and methods for purging the bath of 160-ton converters of PJSC “ArcelorMittal Kryvyi Rih”]. Theory and practice of metallurgy, (2), 31–38

64. Murashov, I. & Stroganov, Y. (2019). Method of determining vehicle speed according to video stream data. IOP Publishing. J. Phys.: Conf. Ser., 1419, 012020

65. Hashim, K. M. (2022). Suggest a mathematical model to measure the speed of vehicles via video. Journal of Education for Pure Science- University of Thi-Qar, 12(2), 130–139

66. Jawad, H. M., & Husain, T. A. (2017). Measuring object dimensions and its distances based on image processing technique by analysis the image using sony camera. Eurasian Journal of Science & Engineering, 3(2), 100–110

67. Viola, P., & Jones, M. (2004). Robust real-time object detection. Intl. J. Computer Vision., 57(2), 137–154

Фундаментальные и прикладные проблемы черной металлургии
Logo