DOI: 10.52150/2522-9117-2024-38-199-221

Golub Tetiana Serhiivna, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-9269-2953. E-mail: isinasu.golubts@gmail.com

Molchanov Lavr Serhiiovych, Ph. D. (Tech.), Head of Department, Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-6139-5956. E-mail: metall729321@gmail.com

COMPLEX ANALYSIS OF METHODS OF INCREASE IN STEEL PRODUCTION EFFICIENCY ON THE EXAMPLE OF THE APPLICATION OF ELECTRICAL ACTIVATION OF THE OXYGEN FLOW IN TOP BLOW CONVERTERS

Abstract. Dynamic modernity and the rapid development of science and technology require the steel industry to constantly improve and intensify all stages of production without significant material costs in order to maintain competitiveness on the construction materials market. This also applies to the currently most effective method of obtaining a liquid metal semi-product – the oxygen-converter method of production. During its existence, being in constant improvement, for the oxygen-converter method, rational indicators of technological factors that can intensify the process have already been thoroughly researched and established, optimal limits of their use have been found, that limits their further improvement. Therefore, new methods of physical influence come to the fore, among which the development of a method of activation of an oxygen gas jet with an electric discharge is relevant. The method proposed by the authors for creating a high-voltage discharge at the outlet of the blowing device was investigated in the paper. This causes the formation of free charged oxygen particles in the gas (ions), that are more active than molecular oxygen in dissolving and interacting with other chemical compounds. The main direction of research reflected in the paper was the thermodynamic analysis of the influence of activation by a high-voltage discharge of an oxygen jet on the course of reactions involving the gaseous phase. The calculations were performed with respect to the Gibbs free energy. This parameter is an indicator of the probability of the free flow of reactions with the formation, in this case, of oxide products. It is indirectly responsible for the intensity of the entire oxygen converter process. Calculations were made for oxidation reactions of melt components in the reaction zone, taking into account the effect of the number of activated particles on the electrode potentials, first of all, of gaseous oxygen. According to the results of the analysis, it was concluded that the process of carbon oxidation and the process of oxygen dissolution in the iron-carbon melt are mainly activated due to the action of gaseous oxygen ions. Accordingly, this should both intensify the course of oxygen converter process itself with active slag formation and the active flow of all oxidation processes, and shorten its duration.

Key words: oxygen-converter process, top blowing with oxygen, high-voltage electric discharge, ions, oxidation reactions, Gibbs free energy.

DOI: https://doi.org/10.52150/2522-9117-2024-38-199-221

For citation: Golub, T. S., & Molchanov, L. S. (2024). Complex analysis of methods of increase in steel production efficiency on the example of the application of electrical activation of the oxygen flow in top blow converters. Fundamental and applied problems of ferrous metallurgy, 38, 199-221. https://doi.org/10.52150/2522-9117-2024-38-199-221

References

1. Zrazhevskiy, A. D., Cherniatevych, A. G., Sushenko, A. V., Gritsenko, A. S. (2014). Sostojanie I dalneishee sovershenstvovanie konstrukcii kislorodnyh furm v konverternyh cehah Ukrainy. Metallurgical and mining industry, 6, 20-30

2. Sushchenko, A. V. (2009). Sovershenstvovanie I optimizaciia dutevyh rezhymov I ustrojstv kislorodnyh konverterov. Reporter of the Priazovskyi State Technical University. Section: Technical sciences, 19, 36 – 41

3. Wang, Z., Liu, H., Wei, S., Liu, Q., & Lu, X. (2021). Effect of blowing parameters on bath mixing efficiency during basic oxygen furnace steelmaking process. Engineering Reports, 3, 1-10

4. Asahara, N., Naito, K., Kitagawa, I., Matsuo, M., Kumakura, M., & Iwasaki, M. (2011). Fundamental study on interaction between top blown jet and liquid Bath. Steel Research International, 82, 587-594. https://doi.org/10.1002/srin.201100041

5. Cao, L. L., Liu, Q., Wang, Z., & Li, N. (2018). Interaction behavior between top blown jet and molten steel during BOF steelmaking process. Ironmaking and Steelmaking, 45, 39-248. https://doi.org/10.1080/03019233.2016.1255373

6. Chou, J. M., Chuang, M. C., & Yeh, M. H. (2003). Effects of process conditions on mixing between molten iron and slag in smelting reduction vessel via water model study. Ironmaking and Steelmaking, 30, 195-202. https://doi.org/10.1179/030192303225009605

7. Odenthal, H.-J., Grygorov, P., Reifferscheid, M., & Schlüter, J. (2013). Advanced blowing and stirring conditions in the BOF process. AISTech 2013 – The Iron & Steel Technology Conference and Exposition, 6-9 May 2013, Pittsburgh, PA., USA, pp. 897-909

8. Wang, M.-l., Lu, Y.-H., Yang, W.-Y., Li, Sh.-G., & Xu, X.-W. (2011). Selection of Oxygen Pressure in BOF Steelmaking. Journal of Iron and Steel Research, International, 18(11), 12-16. https://doi.org/10.1016/S1006-706X(11)60110-6

9. Lima, W., & Maia, B. T. (2022). BOF Lance and Functions. Conference proceedings of AISTech 2022, Pittsburgh, pp. 480-493

10. Li, Z.-Z., Zhu, R., Liu, R.-Z., & Lü, M. (2012). Effect of oxygen lance position on the flow velocity of molten steel in BOF. Journal of University of Science and Technology Beijing, 36, 15-20. https://doi.org/10.13374/j.issn1001-053x.2014.s1.004

11. Bogushevskij, V. S., Grabovskij, G. G.,Tserkovnikov, N. S, & Ushakova, V. A. (2007). Sistema upravlenia konverternoj plavkoj. Metallurgical and mining industry, (4), 232 – 235

12. Dering, D., Swartz, C. L. E., & Dogan, N. (2011). A dynamic optimization framework for basic oxygen furnace operation. Chemical Engineering Science, 241, 116653 https://doi.org/10.1016/j.ces.2021.116653

13. Dering, D., Swartz, C. L. E., & Dogan, N. A. (2020). Dynamic modeling and simulation of basic oxygen furnace (BOF) operation. Processes, 8(4), 483-506. https://doi.org/ 10.3390/pr8040483

14. Baptizmanskiy, V. I., & Okhotskiy, V. B. (1981). Fiziko-himicheskie osnovy kislorodno-konverternogo processa. Vysha shkola

15. Starov, R. V. (1995). Razvitie teorii I razrabotka optimalnoj tehnologii konverternogo processa na baze issledovania izmenenia okislennosti shlaka po hodu produvki: abstract dis. Doctor of tech. sciences: 05.16.02, Dnepropetrovsk

16. Okhotskiy, V. B. (1997). Optimizacia rezima produvki sverhu v konvertere. Metal and casting of Ukraine, 11-12, 34 – 37

17. Li, M. M., Li, Q., Li L., He, Y. B. & Zou, Z. S. (2014). Effect of operation parameters on supersonic jet behavior of BOF six-nozzle oxygen lance. Ironmaking & Steelmaking Processes, Products and Applications, 41(9), 699-709. https://doi.org/10.1179/1743281213Y.0000000154

18. Li, M., Li Q., Kuang, S. B., & Zou, Z. (2015). Coalescence characteristics of supersonic jets from multi-nozzle oxygen lance in steelmaking BOF. Steel research Int., 86(12), 1517-1529. https://doi.org/10.1002/srin.201400506

19. Smith, G. C. (1966). Multiple jet oxygen lances. Theoretical analysis and correlation with practice. JOM, 18(7), 846-851. https://doi.org/10.1007/BF03378475

20. Amano, S., Sato, S., Takahashi, Y., & Kikuchi, N. (2021) Effect of top and bottom blowing conditions on spitting in converter. Engineering Reports, 3(123), e12406. https://doi.org/10.1002/eng2.12406

21. Schmandt, B., & Herwig, H. (2011). Diffuser and nozzle design optimization by entropy generation minimization. Entropy, 13(7), 1380-1402. https://doi.org/10.3390/e13071380

22. Silveira, D. C., Hamadeh, H., Pastel, K., Huber, J. C. & Brosse, G. (2019). Effect of supersonic nozzle design on jet behavior in BOF steelmaking. ABM Proceedings, October 1st -3 rd, 2019, São Paulo, SP, Brazi. P. 1-12 https://doi.org/10.5151/2594-5300-33520

23. Bhattacharya, T., Zhan, L., & Chukwulebe, B. (2016) Design considerations of supersonic oxygen lances for a Basic Oxygen Furnace (BOF). SCANMET V, Sweden. P. 1-11.

24. Sushchenko, A. V. (2011). Razvitie konstrukcii kislorodno-konverternyh furm s centralnym soplovym module. Reporter of the Priazovskyi State Technical University. Section: Technical sciences., 22, 60 – 67

25. Liu, F., Sun, D., Zhu, R., Zhao, F., & Ke, J. (2017). Effect of nozzle twisted oxygen lance on flow field and dephosphorisation rate in converter steelmaking process. Ironmaking & Steelmaking, 44(9), 1-9. https://doi.org/10.1080/03019233.2016.1226562

26. Higuchi, Y., & Tago, Y. (2003). Effect of nozzle twisted lance on jet behavior and spitting rate in top blown process. ISIJ Int., 43, 1410–1414. https://doi.org/ 10.2355/isijinternational.43.1410

27. Liu, G., Liu, K., & Han, P. (2021). Metallurgical performance of innovative double-parameter oxygen lance in BOF steelmaking. Ironmaking & Steelmaking, 48(4),1-10. https://doi.org/10.1080/03019233.2020.1806677

28. Liu, G., Liu, K., Han, P., & Chen, Y. (2019). Numerical investigation on behaviors of interlaced jets and their interaction with bath in BOF steelmaking. AIP Advances, 9, 075202. https://doi.org/10.1063/1.5100170

29. Cherniatevych, A .G., Molchanov, L. S., & Yushkevich, P. O. (2018). Pytannia teorii I praktyky podvyshennia efectyvnosti kombinovanoi produvki konverternoi vanny. Theory and practice of metallurgy, 1-2, 83–95

30. Molchanov, L. S., Cherniatevych, A. G., Vakulchuk, V. V., Yushkevich, P. O., & Chubin, K. I. (2018). Ocenka vlijania konstrukcii mnogojarusnyh kislorodnyh furm na efectivnost produvki konverternoj vanny s dozhiganiem othodiashih gazov. Fundamental and applied issues of ferrous metallurgy, 32, 208–219. http://dspace.nbuv.gov.ua/handle/123456789/160023

31. Vergun, A. S., Cherniatevych, A. G., Nesterov, A. S., & Chayka, A. L. (2020). Sovremennyj tehnologicheskij marshrut konverternogo proizvodstva kachestvennogo zhelezouglerodistogo poluprodukta v syrevyh I energeticheskih usloviah Ukrainy. Metal and casting of Ukraine, 28(320), 30-37. https://doi.org/10.15407/steelcast2020.01.030

32. Li, J., Ma, Zh., Chen, Ch., Zhang, J., & Wang, B. (2022). Behavior of top-blown jet under a new cyclone oxygen lance during BOF steelmaking process. MDPI. Processes, 10, 507-523. https://doi.org/10.3390/ pr10030507

33. Sarma, B., Mathur, P. C., Selines, R. J., & Anderson, J. E. (1998). Fundamental aspects of coherent gas jets. Electric furnace conf. proc, 56, 657–72

34. Mahoney, W. J. (2010). Experimental remarks on supersonic jet behavior in high temperature, reactive ambient in connection to steelmaking. AISTech-Iron and Steel Technology Conf. Proc., Pittsburgh, PA. Р. 1071–1079

35. Meidani, A. R. N., Isac, M., Richardson, A., Cameron, A. and Guthrie, R. I. L. (2004). Modelling shrouded supersonic jets in metallurgical reactor vessels. ISIJ Int., 44, 1639–1645

36. Zhao, F., Sun, D., & Zhu, R. (2017). Effect of shrouding gas parameters on characteristics of supersonic coherent jet. Metall. Mater. Trans. B., 48, 1807–1816. https://doi.org/10.1007/s11663-017-0931-y

37. Golub, T., Molchanov, L., Semykin, S. & Vakulchuk, V. (2024). Evaluating the efficiency of using coherent-type nozzles for the conditions of additional postcombustion of CO to CO2 in the working space of the oxygen converter. Science and Innovation, 20(2), 50 – 59. https://doi.org/10.15407/scine20.02.050

38. Golub, T., Molchanov, L. & Semykin, S. (2023). Studying the possibility of using coherent type nozzles for BOF blowing at the dynamic simulation stand. Science and Innovation, 19(4). P. 79 – 92. https://doi.org/10.15407/scine19.04.079

39. Biswas, J., Hazaveh, P. K., & Coley, K. S. (2024). Slag electrical conductivity and its effect on mass transport and interfacial reaction kinetics. Steel Research International, 11. https://doi.org/10.1002/srin.202300701

40. Belashchenko, D. (2023). The Relationship between electrical conductivity and electromigration in liquid metals. Dynamics, 3(3), 405–424. https://doi.org/10.3390/dynamics3030022

41. Okhotskiy, V. B. (2006). Shlakoobrazovanie v konverternyh sistemah. Metallurgical and mining industry, 7, 130-132

42. Masson, C. R., Smith, I. B., & Witeway, S. G. (1971). Activities and ionic distribution in liquid silicates: application of polymer theory of to silicate melts. Can. J. Chem., 48, 1456 – 1464

43. Bockris, J. O’ M., Sen, R. K., Mittal, K. L. (1972). On quantum electrochemikal. J. Res. Ind. Catalysis. Hokkaido Univ, 20(3), 153–184

44. Bockris, J. O’M. (1998). Modern electrochemistry 2B. Electrodics in chemistry, engineering, biology and environmental sciense. New York: Kluwer academic plenum

45. Wang, H.-C., Xia, W.-Z., Bao, G.-D, Liao, Z.-Y., Wu, T., & Lei, J. (2023). Influence mechanism of direct current electric field on the sulfur removal of fluorine-containing spent refining slag. Journal of Environmental Chemical Engineering, 11(6), 111271. https://doi.org/10.1016/j.jece.2023.111271

46. Xia, W.-Z., Wu, T., Lei, J., Zhang, C., Bao, G.-D., & Wang, H.-C. (2023). Directional sulfur removal from ladle furnace slag by electric field strengthening treatment. Steel research Int., 94(12), 2300182. https://doi.org/10.1002/srin.202300182

47. McTaggart, F. K. (1967). Plasma chemistry in electrical discharges. Elsevier, Amsterdam

48. Nasser, E. (1971). Fundamentals of gaseous ionization and plasma electronics. Wiley Interscience, New York. 456 p.

49. Huang, Z., Liu, L., Zhao, T., Hu, M., Qi, J., & Yan, H. (2024). Investigation on heat transfer and fluid flow of a plasma arc in a plasma melting furnace: Model validation and parameter effects. Applied Thermal Engineering, vol. 257, part A, 124301 https://doi.org/10.1016/j.applthermaleng.2024.124301

50. Semykin, S. I., Poliakov, V. F., & Semykina, Ye. V. (1998). Osobennosti vlijania elektricheskoj energii maloj moshnosti na rafiniruushiu sposobnost konverternogo shlaka. Metallurgical and mining industry, 1, 26 – 30

51. Semykin, S. I., Poliakov, V. F., & Semykina, Ye. V. (2004). Resurso- I energosberegaushaja tehnologija konverternoj plavki s elektricheskimi vozdejstvijami. Metall and custing of Ukraine, 11, 46–48

52. Semykin, S. I., Golub, Т. S., & Prokopenko, P. G. (2019). Stendovoe issledovanie osobennostej elektrofizicheskoj aktivizacii gazovoga kislorodsoderzhashego potoka. Modern problems of metallurgy, 22, 94-103. https://doi.org/10.34185/1991-7848.2019.01.10

53. Semykin, S. I., Kiiashko, T. S., & Semykina, Ye. V. (2011). Issledovanie osobennostej vlijania nizkovoltnogo potenciala na process rafinirovania metalla v kislorodnom konvertere. Metal and casting of Ukraine, 7, 29–33. http://nbuv.gov.ua/UJRN/MLU_2011_7_7

54. Golub, T. S., & Semykin, S. I. (2018). Investigation of electric potential difference during the top oxygen blowing in converter. Journal of Achievements in Materials and Manufacturing Engineering, 88(1), 35–40. https://doi.org/10.5604/01.3001.0012.5869

55. Bandyopadhyay, D., Singh, S. D., Sanyal, D., Singh, K. K., & Singh, K. N. (2003). A study on dissolution kinetics of carbon in liquid iron bath. Chemical Engineering Journal, 94(2), 79–92. https://doi.org/10.1016/S1385-8947(02)00030-X

56. Semykin, S. I., Golub, T. S., Molchanov, L. S., & Prokopenko, P.G . (2023). Analiz mehanizmiv vplyvu aktyvizovanyh strumenav kysnu na processy vydilannia pylu v kysnevo-konverternomu vyrobnyctvi. Fundamental and applied issues of ferrous metallurgy, 37, 246 – 259

57. Novikov, V. K., Spiridonov, M. A., & Sangalova, I. S. (2008). Chemical thermodynamics and elements of structure in oxide melts. Journal of Physics: Conference Series, 98(1), 012020

58. Carter, P. T., & Macfarlane, T. G. (1957). Thermodynamics of slag. J. Iron and Steel Inst., 173(1), 62 – 66

59. Turkdogan, E. T. (1996). Fundametals of Steelmaking. The Institute of Materials, London

60. Atkins P., de Paula J., & Keeler J. (2022). Physical Chemistry. 12th edition. Oxford University press

Фундаментальные и прикладные проблемы черной металлургии
Logo