DOI: 10.52150/2522-9117-2024-38-120-145

Chaika Oleksii Leonidovych, Ph. D. (Tech.), Senior Researcher, Head of the Laboratory of Heat and energy saving technologies, Division of cast iron, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-1678-2580. E-mail: chaykadp@gmail.com

Kornilov Bohdan Volodymyrovych, Ph. D. (Tech.), Senior Researcher, Laboratory of Heat and energy saving technologies, Division of cast iron, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-5544-3023. E-mail: balesan2209@gmail.com

Muravyova Iryna Hennadiivna, D. Sc. (Tech.), Senior Researcher, Leading Researcher, Division of cast iron, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-5926-7787. E-mail: irinamuravyova@gmail.com

Harmash Larysa Ivanivna, Ph. D. (Tech.), Senior Researcher, Division of cast iron, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-6873-6685. E-mail: larysagar@gmail.com

Moskalyna Andrii Oleksandrovych, Ph. D. (Tech.), Researcher, Division of cast iron,  Laboratory of Heat and energy saving technologies, Division of cast iron, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-9552-2853. E-mail: moskalina.aa@gmail.com

Lebid Vitalii Vasylovych, Ph. D. (Tech.), Senior Researcher, Laboratory of Heat and energy saving technologies, Division of cast iron, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. Email: vitalii.lebid@gmail.com

Izumskyi Mykola Mykytovych, Ph. D. (Tech.), Junior Researcher, Laboratory of Heat and energy saving technologies, Division of cast iron, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-5164-4450. Email: izumnick@gmail.com

Dzhyhota Maryna Heorhiivna, Leading Engineer, Laboratory of Heat and energy saving technologies, Division of cast iron, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-3062-5127

ANALYSIS OF EXISTING AND PROSPECTIVE BLAST FURNACE SMELTING TECHNOLOGIES PROVIDING REDUCTION OF CARBON DIOXIDE EMISSIONS FOR CURRENT AND PROSPECTIVE CONDITIONS OF PIG IRON PRODUCTION IN UKRAINE

Abstract. The article discusses the results of heat and power and exergy calculations of the possibilities of new and existing technologies for reducing carbon dioxide emissions and coke consumption, increasing pig iron production by injecting various fuel additives into the furnace – pulverised coal, hydrogen, fuel oil, natural gas, coke oven and carbon monoxide, using metal additives, increasing the blast temperature, heat losses and improving gas distribution in the blast furnace. The calculations were performed using a mathematical model of the complete energy balance of blast furnace smelting developed at the Iron and Steel Institute of National Academy of Sciences of Ukraine, and the impact of the potential of new and existing technologies on reducing CO2 emissions and technical and economic indicators of blast furnace smelting was assessed with a wide range of changes in the consumption of fuel additives and their combinations, the use of metal additives and changes in the technological parameters of the blast furnace. The study results showed that CO2 emissions in blast furnace production can be reduced by 25-30% by making changes to blast furnace technology and depend on investments, the raw material and energy base of the steelmaker, and the level of existing blast furnace technology. The influence of low-cost measures to increase blast temperature, use clean metal additives, reduce heat losses and improve gas distribution in the blast furnace on the reduction of carbon dioxide emissions and technical and economic indicators of blast furnace melting is considered. The limit values for the injection of various fuel additives into a blast furnace have been determined, which are determined by the following factors: the degree of direct reduction of iron, theoretical combustion temperature, the presence of industrial oxygen, and the temperature of the top gas. The results can be useful for determining the economic feasibility of a particular measure to reduce CO2 emissions in blast furnace production.

Key words: blast furnace, decarbonisation, natural gas, coke oven gas, coke consumption.

DOI: https://doi.org/10.52150/2522-9117-2024-38-120-145

For citation: Chaika, O. L., Kornilov, B. V., Muravyova, I. H., Harmash, L. I., Moskalyna, A. O., Lebid, V. V., Izumskyi, M. M., Dzhyhota, M. H. (2024). Analysis of existing and prospective blast furnace smelting technologies providing reduction of carbon dioxide emissions for current and prospective conditions of pig iron production in Ukraine. Fundamental and applied problems of ferrous metallurgy, 38, 120-145. https://doi.org/10.52150/2522-9117-2024-38-120-145

References

1. Chaika, O. L., Kornilov, B. V., Merkulov, O. Ie., Moskalyna, A. O., Lebid, V. V., & Iziumskyi, M. M. (2022). Analiz tendentsii rozvytku uiavlen ta tekhnolohii, spriamovanykh na zmenshennia emisii dioksydu vuhletsiu v domennomu vyrobnytstvi [Analysis of trends in the development of ideas and technologies aimed at reducing carbon dioxide emissions in blast furnace production]. Metal and casting of Ukraine, 2(329), 8-19 [in Ukrainian]. https://doi.org/10.15407/steelcast2019.10.064

2. The Paris Agreement within the framework of the UN Framework Convention. Paris. (2015). https://unfccc.int/sites/default/files/russian_paris_agreement.pdf

3. 25th session of the United Nations Climate Change Conference. Madrid. (2019). https://unfccc.int/event/cop-25

4. 26th session of the United Nations Climate Change Conference. Glasgow. (2021). http://surl.li/zpltla

5. Buergler, T., & Kofler, I. (2017). Direct Reduction Technology as a Flexible Tool to Reduce CO2 Intensity of Iron and Steelmaking. Berg Huettenmaenn Monatsh, 162, 14-19. https://doi.org/10.1007/s00501-016-0567-2

6. Kurunov, I. F. (2017). Sovremennoe sostoianie i ozhidaemye mirovye tendentsii razvitiia metallurgii zheleza [Current state and expected global trends in iron metallurgy development]. Bulletin of Scientific, Technical and Economic Information “Ferrous Metallurgy”, 2, 3-11 [in Russian]

7. Borodulyn, A. V., Chaika, A. L., Sokhatskyi, A. A., & Moskalyna, A. A. (2017). Metodyka rascheta. Polnyi enerhetycheskyi balans domennoi plavky [Method of calculation ‘Full energy balance of blast furnace smelting] (A. s. No. 73905 Ukraine). Ministry of Economic Development and Trade of Ukraine. https://ukrpatent.org/atachs/Avt_Pravo_%E2%84%9646_2017.pdf

8. Szargyt, J., Morris, D. R., & Steward, F. R. (1988). Exergy analysis of thermal, chemical and metallyrgical processes. New York, Toronto.

9. Stepanov, V. S., & Stepanova, T. B. (1990). O metodakh rascheta kumuliativnykh zatrat energii i eksergii na primere proizvodstva stali [On methods for calculating cumulative energy and exergy costs (on the example of steel production)]. Industrial heat engineering, 6, 65-71 [in Russian]

10. Stepanov, V. S. (1992). Analisis of energy effecienty of industrial processes. Heidelberg. Springer-Veclag.

11. Stepanov, V. S., & Stepanova, T. B. (1994). Effektivnost ispolzovaniya energii [Efficiency of use energy]. Novosibirsk: Nauka [in Russian]

12. Stepanov, V. S. (1984). Analiz energeticheskogo sovershenstva tehnologicheskih processov [Analysis of the energy perfection of technological processes]. Novosibirsk: Nauka [in Russian]

13. Aizatulov, R. S., Borodulin, A. V., & Kovtun, A. F. (1989). Energeticheskaia i eksergeticheskaia kharakteristika chuguna [Energy and exergy characterization of cast iron]. OJSC “Chermetinformatsia” (deposited research paper 30.11.1989, No. 5311), P. 19 [in Russian]

14. Izhevskij, V. P. (1912). Sistema ucheta domennogo balansa [Accounting system of Blast furnace balance]. Journal of the Russian Metallurgical Society. part 1, No. 2, 180-214 [in Russian]

15. Borodulin, A. V., Gorbunov, A. D., Romanenko, V. I., & Sushhev, S. P. (2006). Domna v energeticheskom izmerenii [Blast furnace in the energy dimension]. Dneprodzerzhinsk [in Russian]

16. Barrett, N., Mitra, S., Doostmohammadi, H., O’dea, D., Zulli, P., Chew, S., Honeyands, T. (2022). Assessment of Blast Furnace Operational Constraints in the Presence of Hydrogen Injection. ISIJ International, 62(6), 1168-1177.

17. Martino Guilherme, Marchal Emmanuel (2021, October 7). The environmental impacts of hydrogen injection in a blast furnace. Cassotis Consulting. https://www.cassotis.com/insights/environmental-impacts-hydrogen-blast-furnace

18. Vegman, E. F., Zherebin, B. N., Pohvisnev, A. N. et al. (2004). Metallurgiya chuguna [Metallurgy of cast iron] [3rd ed., revised.]. Moskva: Akademkniga [in Russian]

19. Gotlib, A. D. (1958). Domennyiy protsess [Blast furnace process]. Moskva: Metallurgiya [in Russian]

20. Ramm, A. N. (1980). Sovremennyiy domennyiy protsess [Modern blast furnace process]. Moskva: Metallurgiya [in Russian]

21. Pavlov, M. A. (1994). Issledovanie plavilnogo protsessa domennykh pechei Klimkovskogo zavoda [Research of melting process of blast furnaces of Klimkovsky Plant]. Mining Journal, 3, 265. [in Russian]

22. Krasavcev, N. I. (1960). Development of ideas about the influence of direct and indirect reduction on the specific consumption of coke in blast furnaces. in book: “Scientific research to help of blast furnace production” (pp. 9-57). Dnepropetrovsk. [in Russian]

23. Ramm, A. N. (1965). O neobosnovannoi kritike printsipa Griunera [On the unjustified criticism of the Gruner principle]. Steel, 8, 686-689. [in Russian]

24. Lozovoj, V. P., & Sharkevich, L. D. (1995). Priamoe vosstanovlenie zheleza v sovremennom domennom protsesse [Direct reduction of iron in the modern blast furnace process]. Steel, 3, 8-10. [in Russian]

25. Chaika, A. L., Lebed’, V. V., Kornilov, B. V., Moskalina, A. A., Karikov, S. A. (2021). Heat and Power Analysis of Technologies for Reducing Carbon Dioxide Emissions and Increasing the Energy Efficiency of Blast-Furnace Production. Steel in Translation, 51(1). 68-72. https://doi.org/10.3103/S0967091221010034

26. Chaika, O., Kornilov, B., Alter, M., Lebid, V., Izumskyi, M., Moskalyna, A., Naboka, V. (2023). Analysis of new and existing technologies for reducing carbon dioxide emissions based on the energy balance of blast furnace. METEC & 6th ESTAD. Düsseldorf, Germany. 12-16 June 2023.

27. Chaika, O. L, Kornilov, B. V., Moskalyna, A. O., Merkulov, O.Ie., Lebid, V.V., & Iziumskyi, M.M. (2022). Doslidzhennia vplyvu tekhnolohii vykorystannia PVP, pryrodnoho ta koksovoho hazu na dekarbonizatsiiu domennoho vyrobnytstva [Research of the influence of technologies using PCI, natural and coke over gas on the decarbonization of the blast furnace production]. Fundamental and applied problems of ferrous metallurgy, 36, 49-66. [In Ukrainian]. https://doi.org/10.52150/2522-9117-2022-36-49-66

28. Chaika, O., Kornilov, B., Myravyova, I., Moskalyna, A., Lebid, V., Ivancha, M. (2024). Prospects for the use of hydrogen and hydrogen-containing additives to reduce CO2 emissions and to improve the performance of blast furnace smelting. Science and Innovation20(5), 35-52. https://doi.org/10.15407/scine20.05.035

Фундаментальные и прикладные проблемы черной металлургии
Logo