DOI: 10.52150/2522-9117-2024-38-26-38

Hubynskyi Mykhailo Volodymyrovych, Ph. D. (Tech.), Professor., Leading Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-3770-4397. E-mail: gubinm58@gmail.com

Merkulov Oleksii, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-7867-0659. E-mail: merkulov1@ukr.net

Sybir Artem Vitaliiovych, Ph. D. (Tech.), Associate Professor, Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-9974-0636. E-mail: artem.sybir@gmail.com

Fedorov Serhii Serhiiovych, D. Sc. (Tech.), Professor., Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-5409-882X. E-mail: fedorov.pte@gmail.com

Hubynskyi Semen Mykhailovych, Researcher, Ukrainian State University of Science and Technologies, Lazariana St., 2, Dnipro, 49010, Ukraine. ORCID: 0000-0002-4598-5136. E-mail: senja-g@ukr.net

Forys Oleksii Mykhailovych, Ph. D. Student, Ukrainian State University of Science and Technologies, Lazariana St., 2, Dnipro, 49010, Ukraine. ORCID: 0000-0002-9524-2381. E-mail: forissn@gmail.com

Dudchenko Serhii Oleksandrovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-7319-9896. E-mail: s.dudchenko@meta.ua

Dzhyhota Maryna Heorhiivna, Leading Engineer, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-3062-5127. E-mail: office.isi@nas.gov.ua

DETERMINATION OF THE MECHANICAL PROPERTIES OF SYNTHETIC CAST IRONS WHEN USING CARBURISER OBTAINED BY ELECTROTHERMAL FLUIDISED BED

Abstract. The development of high-temperature technologies in metallurgy and the chemical industry is associated with the replacement of fossil fuels with green electricity. The process of heating carbonaceous raw materials in an electrothermal fluidized bed (EFB) offers this opportunity. This is when the current passes directly through the bed and heats it up using joule heat. This process allows to significantly reduce energy consumption compared to traditional technologies based on the use of Atchinson and Kastner furnaces. One of the products that can be obtained in EFB furnaces is carburizers used in the smelting of synthetic cast iron. The conducted research allowed us to determine the properties of carburizers that ensure the quality of cast iron and the parameters of heat treatment of precursors in EFB. The purpose of this study was to obtain a direct answer about the efficiency of carburizers produced by the new technology. This task was solved by comparative tests of carburiser produced by the EFB method and traditional technologies in the production of synthetic cast iron. The tests were conducted using a laboratory induction furnace with a capacity of 10 kg. The melts were carried out under identical conditions. As a result, the results proved that the carburizing processes of cast iron with carburizer obtained by the new technology and synthetic graphite have similar temperature and kinetic dependencies. The degree of carbon assimilation is almost the same. Metallographic analysis of the obtained synthetic cast iron samples showed that the castings obtained using synthetic graphite are characterized by a larger number of pores, which may be the reason for the decrease in mechanical properties. The results of compression, tensile, bending and hardness tests confirmed this. The test results proved the effectiveness of producing high-quality carburiser using EFB technology.

Key words: electrothermal fluidized bed, synthetic cast iron, carburizing, carburiser.

DOI: https://doi.org/10.52150/2522-9117-2024-38-26-38

For citation: Hubynskyi, M. V., Merkulov, O. Ye., Sybir, A. V., Fedorov, S. S., Hubynskyi, S. M., Foris, O. M., Dudchenko, S. O., & Dzhygota, M. H. (2024). Determination of the mechanical properties of synthetic cast iron when using carburiser obtained by electrothermal fluidised bed. Fundamental and applied problems of ferrous metallurgy, 38, 26-38. https://doi.org/10.52150/2522-9117-2024-38-26-38

References

1.   Petrov, B. (2006). Enerosberezhenie pri proizvodstve elektrodnogo termoantracita [Energy saving in the production of electrode thermoanthracite]. Ekotekhnologiya. [In Russian].

2.   Sybir, A. V, Hubynskyi, M., Fedorov, S., Hubynskyi, S., & Gogotsi O. (2020). Electrothermal fluidised bed furnaces. Design features. Metalurhiina ta hirnychorudna promyslovist, (2), 42-61. https://doi.org/10.34185/0543-5749.2020-2-42-61

3.   Gupta, С., & Sathiyamoorthy, D. (1999). Fluid bed technology in materials processing. Boca Raton, Fla.: CRC Press, 528. https://doi.org/10.1201/
9780367802301

4.   Zabrods’kij, S. S. (1971). Visokotemperaturni ustanovki z psevdozridzhenim sharom [High-temperature fluidized bed units]. Energiya. [In Russian].

5.   Hubynskyi, S. et al (2024). IOP Conf. Ser.: Earth Environ. Sci., 1348, 012028. https://doi.org/10.1088/1755-1315/1348/1/012028

6.   Hubynskyi, M. V., Sybir, A. V., Fedorov, S. S., Merkulov, O. Ye., Hubynskyi, S. M., Koval S. V., & Foris, O. M. (2022). Estimation of greenhouse gas emission reduction during the production of artificial graphite in an electrothermal fluidised bed. Fundamental and applied problems of ferrous metallurgy, 36, 455-465. https://doi.org/10.52150/2522-9117-2022-36-455-465

7.   Hubynskyi, M. V., Sybir, A. V., Fedorov, S. S., Merkulov, O. Ye., Hubynskyi, S. M., Mazorchuk, V. F., & Foris, O. M. (2023). Peculiarities of the Fe-C melt carburization process and the effect produced on it by the type of carburizers. Fundamental and applied problems of ferrous metallurgy, 37, 62-75. https://doi.org/10.52150/2522-9117-2023-37-62-75

8.   Sybir, A., Hubynskyi, M., Fedorov, S., Hubynskyi, S., Vvedenska, T., & Bezuglyi, V. (2020). Effect of heat shock on graphitization of Donbass anthracite. Mining of Mineral Deposits, 14(3), 43-49. https://doi.org/10.33271/mining14.03.043

9.   Sybir, A., Hubynskyi M., Balalaiev K., Burchak O., Sukhyy K., Fedorov S., Pinchuk V, Hubynskyi S, & Vvedenska T. (2022). Effect of Parameters of the Anthracite Heat Treatment on the Properties of Carbon Materials during Shock Heating. Voprosy khimii i khimicheskoi tekhnologii, 5, 94-101. https://doi.org/10.32434/0321-4095-2022-144-5-94-101

10. Sybir, A. V., Hubynskyi, S. M., Fedorov, S. S., Sukhyy, K. M., Hubynskyi, M. V., & Vvedenska, T. Y. (2023). Peculiarities of high-temperature refining of cabon materials. Voprosy khimii i khimicheskoi tekhnologii, 6, 177-186. https://doi.org/10.32434/0321-4095-2023-151-6-177-186

Фундаментальные и прикладные проблемы черной металлургии
Logo