DOI: 10.52150/2522-9117-2023-37-534-556

Baiul Kostiantyn Vasylovych, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
Ukrainian State University of Science and Technologies, Lazariana Str., 2, Dnipro, 49010, Ukraine. ORCID: 0000-0003-1426-7956. E-mail: baiulkonstantin@gmail.com

Vashchenko Serhii Volodymyrovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-8344-961X. E-mail: sergeyvaschenko@yandex.ua

Khudyakov Oleksandr Yuriiovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-6507-1120.

Zinchenko Andrii Viktorovych, Ph. D. (Pys.-Math.), Senior Researcher, Institute of Transport Systems and Technologies of the National Academy of Sciences of Ukraine, vul. Pysarzhevskoho, 5, m. Dnipro, 49000, Ukraina.  ORCID: 0000-0003-0281-6663

Semenov Yurii Stanislavovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-2299-5742. E-mail: yuriy.semenov.isi@gmail.com

Solodka Nataliia Oleksandrivna, Ph. D. (Tech.), Senior Researcher, Assoc. Prof., Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
Ukrainian State University of Science and Technologies, Lazariana Str., 2, Dnipro, 49010, Ukraine. ORCID 0000-0002-7545-4969

ANALYSIS OF MODERN APPROACHES AND METHODS FOR DESIGNING MECHANICAL EQUIPMENT, WHICH CAN BE APPLIED IN THE DEVELOPMENT OF A CONTEMPORARY SYSTEMATIC APPROACH TO CREATING ROLLER BRIQUETTING PRESSES

Abstract. The objective of this work is to analyze modern design approaches and explore their potential application in developing a contemporary system approach to designing roller briquette presses. The analysis and classification of fundamental approaches in the theory and methodology of design have been conducted. It is emphasized that there is still no universally accepted approach to the design of roller presses. This lack of uniformity arises from the diverse array of structural solutions, components, and details inherent in presses. Furthermore, methods for determining briquetting process parameters and press equipment operation modes are actively evolving. The nomenclature of briquetting materials is expanding, and there are ongoing changes in equipment management systems. The design field is witnessing the active incorporation of new materials, structural details, and components. In addition to covering the fundamentals of general theory and design methodology, this work offers an overview and analysis of established methods for designing machines, technical systems, and processes. These methods are closely related to the specified theory and can be applied to enhance the system approach to designing roller presses.

DOI: https://doi.org/10.52150/2522-9117-2023-37-534-556

Key words: roller presses, briquetting, system approach, design theory and methodology.

For citation: Baiul, K. V., Vashchenko, S. V., Khudyakov, A. Yu., Zinchenko, A. V., Semenov, Yu. S., & Solodka, N. O. (2023). Analysis of modern approaches and methods for designing mechanical equipment, which can be applied in the development of a contemporary systematic approach to creating roller briquetting presses. Fundamental and applied problems of ferrous metallurgy, 37, 534-556. https://doi.org/10.52150/2522-9117-2023-37-534-556

References

  1. Pahl, G., Beitz, W., Feldhusen, J., & Grote, K-H. (2007). Engineering Design – A Systematic Approach. Wallace K, Blessing L (Trans. and Eds.) 3rd ed. Springer, Berlin
  2. Ulrich, K. T., & Eppinger, S. D. (2008). Product Design and Development. 4th Edition, McGraw-Hill, New York
  3. Ullman, D. G. (2002). The Mechanical Design Process. McGraw Hill
  4. Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering. Prentice Hall, New York
  5. Dixon, J., & Poli, C. (1995). Engineering Design and Design for Manufacturing: A Structured Approach. Field Stone Publishers, Conway, MA
  6. Tomiyama, T (1997). A Note on Research Directions of Design Studies. In Riitahuhta A, (Ed.) WDK 25, Proceedings of the 11th ICED, Vol. 3. Tampere University of Technology, Tampere, Finland, pp. 29–34
  7. Andreasen, M. M, & Hein, L. (1987). Integrated Product Development. Springer, New York
  8. Tomiyama, T., & Yoshikawa, H. (1987). Extended General Design Theory. In Yoshikawa H, & Warman EA, (Eds.) Design Theory for CAD. North-Holland, Amsterdam, pp. 95–130
  9. Rodenacker, W. G. (1976). Methodisches Konstruieren: Grundlagen, Methodik, praktische Beispiele. Springer, Berlin.
  10. Roth, K. (1982). Konstruieren mit Konstruktionskatalogen, vol. II/ Kataloge. Springer, Berlin
  11. VDI. (1993). VDI 2221: Systematic Approach to the Development and Design of Technical Systems and Products. Beuth Verlag
  12. VDI. (1997) VDI 2222: Part 1. Methodic Development of Solution Principles. Beuth Verlag
  13. Tomiyama, T. (2006). A Classification of Design Theories and Methodologies. Proceedings of the 2006 ASME IDETC, Paper No. DETC2006-99444, ASME
  14. Tomiyama, T., & Yoshikawa, H. (1987). Extended General Design Theory. In Yoshikawa H., Warman EA, (Eds.) Design Theory for CAD. North-Holland, Amsterdam, pp. 95–130
  15.  Kakuda, Y., & Kikuchi, M., (2001). Abstract Design Theory. Annals of Japan Association of Philosophical Science, 10(3), 19–35
  16. Grabowski, H., Rude, S., Grein, G., Meis, E., & El-Mejbir, E. (1998). Universal Design Theory: Elements and Applicability to Computers. in Grabowski, H., Rude, S., Grein, G., (Eds.) Universal Design Theory. Shaker Verlag, Aachen, pp. 209–220
  17. Finger, S., & Dixon, J.R. (1989). A Review of Research in Mechanical Engineering Design. Part II: Representations, Analysis, and Design for the Life Cycle. Research in Engineering Design, 1(2), 121–137
  18. Horva’th, I. (2004). A Treatise on Order in Engineering Design Research. Research in Engineering Design, 15(3), 155–181
  19. Finger, S., & Dixon, J. R. (1989). A Review of Research in Mechanical Engineering Design. Part I: Descriptive, Prescriptive, and Computer-based Models of Design Processes. Research in Engineering Design, 1(1), 51–67
  20. Morgan, J. M., & Liker, J. K. (2006). The Toyota Product Development System: Integrating People, Process and Technology. Productivity Press, Seattle, WA
  21. Gu, P., Hashemian, M., & Nee, A. Y. C. (2004). Adaptable Design. Annals of CIRP, 53(2),539–557
  22. Suh, N. P. (1990) The Principles of Design. Oxford University Press, Oxford
  23. Weber, C. (2005). CPM/PDD – An Extended Theoretical Approach to Modelling Products and Product Development Processes. Proceedings of the 2-nd German Israeli Symposium on Advances in Methods and Systems for Development of Products and Processes, Fraunhofer-IRB-Verlag, Stuttgart, pp. 159–179
  24. Weber, C. (2007). Looking at ‘DFX’ and ‘Product Maturity’ from the Perspective of a New Approach to Modelling Product and Product Development Processes. In The Future of Product Development. Springer, Berlin, pp. 85–104
  25. Warmack, J. P., & Jones, D. T. (1991). The Machine that Changed the World: The Story of Lean Production. Harper Perennial, New York
  26. Sohlenius, G. (1992). Concurrent Engineering. Annals of CIRP, 41(2), 645–656
  27. Albers, A., & Alink, T. (2007). Support of Design Engineering Activity for a Systematic Improvement of Products. In The Future of Product Development. Springer, Berlin, pp. 105–114
  28. Farmer, L. E., & Gladman, C. A. (1986). Tolerance Technology – Computer-based Analysis. Annals of CIRP, 35(1), 7–10
  29. Finger, S., & Dixon, J. R. (1989). A Review of Research in Mechanical Engineering Design. Part I: Descriptive, Prescriptive, and Computer-based Models of Design Processes. Research in Engineering Design, 1(1), 51–67
  30. Finger, S., & Dixon, J. R. (1989). A Review of Research in Mechanical Engineering Design. Part II: Representations, Analysis, and Design for the Life Cycle. Research in Engineering Design, 1(2), 121–137
  31. Simon, H. A. (1960). The New Science of Management Decision. Harper and Row, New York, NY
  32. Nikolaidis, E., Ghiocel, D. M., & Singhal, S., (Eds.) (2004). Engineering Design Reliability Handbook. CRC Press, Boca Raton, FL
  33. Keeney, R. L. (2004). Stimulating Creative Design Alternatives Using Customer Values. IEEE Transactions on Systems Man and Cybernetics. Part C. Applications and Reviews, 34(4), 450–459
  34. Suh, N. P. (1990). The Principles of Design. Oxford University Press, Oxford
  35. Browning, T. R. (2001). Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions. IEEE Transactions on Engineering Management, 48(3), 292–306
  36. ProSTEP. (2008) HOPE: Fields of Research for the Holistic Optimization of Product Creation, White Paper. ProSTEP iViP Association
  37. Ueda, K., Fujii, T., & Inouel, R. (2007). An Emergent Synthesis Approach to Simultaneous Process Planning and Scheduling. Annals of CIRP, 56(1), 463–466
  38. Ueda, K., Kito, T., & Takenaka, T. (2008). Modelling of Value Creation Based on Emergent Synthesis. Annals of CIRP, 57(1), 473–476
  39. Rausand, M., & Høyland, A. (2004). System Reliability Theory: Models, Statistical Methods, and Applications (2nd ed.). Wiley. p. 88
  40. Hansen, F. (1974). Konstruktionswissenschaft – Grundlagen und Methoden. 2nd ed. Hanser-Verlag, Munchen-Wien. http://www.dmg-lib.org/dmglib/main/portal.jsp?mainNaviState=browsen.docum.meta&id=4892009
  41. Hansen, F. (1966). Konstruktionssystematik. 3rd ed. VEB-Verlag Technik, Berlin. http://www.dmg-lib.org/dmglib/main/portal.jsp?mainNaviState=browsen.docum.meta&id=4886009
  42. Hubka, V. (1976). Theorie der Konstruktionsprozesse. Springer, Berlin/ Heidelberg
  43. Hubka, V., & Eder, W. E. (1996). Design Science. Springer, London
  44. Andreasen, M. M. (1994). Modelling- The Language of the Designer. Journal of Engineering Design, 5(2), 103–115
  45. Andreasen, M. M., & Hein, L. (1987). Integrated Product Development. Springer, New York, NY
  46. Koller, R. (1998). Konstruktionslehre fur den Maschinenbau. 4th ed. SpringerVerlag
  47. Pahl, G., Beitz, W., Feldhusen, J., & Grote, K-H. (2007). Engineering DesignA Systematic Approach. Wallace, K., Blessing, L. (Trans. and Eds.) 3rd ed. Springer, Berlin
  48. Mizuno, S., & Akao, Y. (1993). QFD: The Customer-driven Approach to Quality Planning & Deployment. Asian Productivity Organization, Tokyo
  49. Roth, K. (1982). Konstruieren mit Konstruktionskatalogen, vol. I. Konstruktionslehre. Springer, Berlin
  50. Roth, K. (1982). Konstruieren mit Konstruktionskatalogen, vol. II. Kataloge. Springer, Berlin
  51. Taguchi, G. (1987). The System of Experimental Design Engineering Methods to Optimize Quality and Minimize Cost, vols. 1 and 2. American Supplier Institute, Dearborn, MI
  52. Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering. Prentice Hall, New York
  53. Altshuller, G. (1999). The Innovation Algorithm. Technical Innovation Center, Worcester, MA
  54. Cavallucci, D., & Weil, R. (2001). Integrating Altshuller’s Development Laws for Technical Systems into the Design Process. Annals of CIRP, 50(1), 115–120
  55. Journal of the European TRIZ Association: INNOVATOR, ISSN 1866-4180 https://etria.eu/portal/index.php/innovator-etria-official-journal
  56.  Grabowski, H., & Lossack, R. (2000). The Axiomatic Approach in the Universal Design Theory. Proceedings of the First International Conference on Axiomatic Design, Cambridge, MA, June 21–23
  57. Grabowski, H., Rude, S., Grein, G., Meis, E., & El-Mejbir, E. (1998). Universal Design Theory: Elements and Applicability to Computers. In Grabowski, H., Rude, S., Grein, G. (Eds.) Universal Design Theory. Shaker Verlag, Aachen, pp. 209–220
  58. Ullman, D. G. (2002). The Mechanical Design Process. McGraw Hill
  59. Ulrich, K. T., & Eppinger, S. D. (2007). Product Design and Development. MсGraw-Hill, New York
Фундаментальные и прикладные проблемы черной металлургии
Logo