DOI: 10.52150/2522-9117-2023-37-534-556
Baiul Kostiantyn Vasylovych, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
Ukrainian State University of Science and Technologies, Lazariana Str., 2, Dnipro, 49010, Ukraine. ORCID: 0000-0003-1426-7956. E-mail: baiulkonstantin@gmail.com
Vashchenko Serhii Volodymyrovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-8344-961X. E-mail: sergeyvaschenko@yandex.ua
Khudyakov Oleksandr Yuriiovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-6507-1120.
Zinchenko Andrii Viktorovych, Ph. D. (Pys.-Math.), Senior Researcher, Institute of Transport Systems and Technologies of the National Academy of Sciences of Ukraine, vul. Pysarzhevskoho, 5, m. Dnipro, 49000, Ukraina. ORCID: 0000-0003-0281-6663
Semenov Yurii Stanislavovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-2299-5742. E-mail: yuriy.semenov.isi@gmail.com
Solodka Nataliia Oleksandrivna, Ph. D. (Tech.), Senior Researcher, Assoc. Prof., Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
Ukrainian State University of Science and Technologies, Lazariana Str., 2, Dnipro, 49010, Ukraine. ORCID 0000-0002-7545-4969
ANALYSIS OF MODERN APPROACHES AND METHODS FOR DESIGNING MECHANICAL EQUIPMENT, WHICH CAN BE APPLIED IN THE DEVELOPMENT OF A CONTEMPORARY SYSTEMATIC APPROACH TO CREATING ROLLER BRIQUETTING PRESSES
Abstract. The objective of this work is to analyze modern design approaches and explore their potential application in developing a contemporary system approach to designing roller briquette presses. The analysis and classification of fundamental approaches in the theory and methodology of design have been conducted. It is emphasized that there is still no universally accepted approach to the design of roller presses. This lack of uniformity arises from the diverse array of structural solutions, components, and details inherent in presses. Furthermore, methods for determining briquetting process parameters and press equipment operation modes are actively evolving. The nomenclature of briquetting materials is expanding, and there are ongoing changes in equipment management systems. The design field is witnessing the active incorporation of new materials, structural details, and components. In addition to covering the fundamentals of general theory and design methodology, this work offers an overview and analysis of established methods for designing machines, technical systems, and processes. These methods are closely related to the specified theory and can be applied to enhance the system approach to designing roller presses.
DOI: https://doi.org/10.52150/2522-9117-2023-37-534-556
Key words: roller presses, briquetting, system approach, design theory and methodology.
For citation: Baiul, K. V., Vashchenko, S. V., Khudyakov, A. Yu., Zinchenko, A. V., Semenov, Yu. S., & Solodka, N. O. (2023). Analysis of modern approaches and methods for designing mechanical equipment, which can be applied in the development of a contemporary systematic approach to creating roller briquetting presses. Fundamental and applied problems of ferrous metallurgy, 37, 534-556. https://doi.org/10.52150/2522-9117-2023-37-534-556
References
- Pahl, G., Beitz, W., Feldhusen, J., & Grote, K-H. (2007). Engineering Design – A Systematic Approach. Wallace K, Blessing L (Trans. and Eds.) 3rd ed. Springer, Berlin
- Ulrich, K. T., & Eppinger, S. D. (2008). Product Design and Development. 4th Edition, McGraw-Hill, New York
- Ullman, D. G. (2002). The Mechanical Design Process. McGraw Hill
- Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering. Prentice Hall, New York
- Dixon, J., & Poli, C. (1995). Engineering Design and Design for Manufacturing: A Structured Approach. Field Stone Publishers, Conway, MA
- Tomiyama, T (1997). A Note on Research Directions of Design Studies. In Riitahuhta A, (Ed.) WDK 25, Proceedings of the 11th ICED, Vol. 3. Tampere University of Technology, Tampere, Finland, pp. 29–34
- Andreasen, M. M, & Hein, L. (1987). Integrated Product Development. Springer, New York
- Tomiyama, T., & Yoshikawa, H. (1987). Extended General Design Theory. In Yoshikawa H, & Warman EA, (Eds.) Design Theory for CAD. North-Holland, Amsterdam, pp. 95–130
- Rodenacker, W. G. (1976). Methodisches Konstruieren: Grundlagen, Methodik, praktische Beispiele. Springer, Berlin.
- Roth, K. (1982). Konstruieren mit Konstruktionskatalogen, vol. II/ Kataloge. Springer, Berlin
- VDI. (1993). VDI 2221: Systematic Approach to the Development and Design of Technical Systems and Products. Beuth Verlag
- VDI. (1997) VDI 2222: Part 1. Methodic Development of Solution Principles. Beuth Verlag
- Tomiyama, T. (2006). A Classification of Design Theories and Methodologies. Proceedings of the 2006 ASME IDETC, Paper No. DETC2006-99444, ASME
- Tomiyama, T., & Yoshikawa, H. (1987). Extended General Design Theory. In Yoshikawa H., Warman EA, (Eds.) Design Theory for CAD. North-Holland, Amsterdam, pp. 95–130
- Kakuda, Y., & Kikuchi, M., (2001). Abstract Design Theory. Annals of Japan Association of Philosophical Science, 10(3), 19–35
- Grabowski, H., Rude, S., Grein, G., Meis, E., & El-Mejbir, E. (1998). Universal Design Theory: Elements and Applicability to Computers. in Grabowski, H., Rude, S., Grein, G., (Eds.) Universal Design Theory. Shaker Verlag, Aachen, pp. 209–220
- Finger, S., & Dixon, J.R. (1989). A Review of Research in Mechanical Engineering Design. Part II: Representations, Analysis, and Design for the Life Cycle. Research in Engineering Design, 1(2), 121–137
- Horva’th, I. (2004). A Treatise on Order in Engineering Design Research. Research in Engineering Design, 15(3), 155–181
- Finger, S., & Dixon, J. R. (1989). A Review of Research in Mechanical Engineering Design. Part I: Descriptive, Prescriptive, and Computer-based Models of Design Processes. Research in Engineering Design, 1(1), 51–67
- Morgan, J. M., & Liker, J. K. (2006). The Toyota Product Development System: Integrating People, Process and Technology. Productivity Press, Seattle, WA
- Gu, P., Hashemian, M., & Nee, A. Y. C. (2004). Adaptable Design. Annals of CIRP, 53(2),539–557
- Suh, N. P. (1990) The Principles of Design. Oxford University Press, Oxford
- Weber, C. (2005). CPM/PDD – An Extended Theoretical Approach to Modelling Products and Product Development Processes. Proceedings of the 2-nd German Israeli Symposium on Advances in Methods and Systems for Development of Products and Processes, Fraunhofer-IRB-Verlag, Stuttgart, pp. 159–179
- Weber, C. (2007). Looking at ‘DFX’ and ‘Product Maturity’ from the Perspective of a New Approach to Modelling Product and Product Development Processes. In The Future of Product Development. Springer, Berlin, pp. 85–104
- Warmack, J. P., & Jones, D. T. (1991). The Machine that Changed the World: The Story of Lean Production. Harper Perennial, New York
- Sohlenius, G. (1992). Concurrent Engineering. Annals of CIRP, 41(2), 645–656
- Albers, A., & Alink, T. (2007). Support of Design Engineering Activity for a Systematic Improvement of Products. In The Future of Product Development. Springer, Berlin, pp. 105–114
- Farmer, L. E., & Gladman, C. A. (1986). Tolerance Technology – Computer-based Analysis. Annals of CIRP, 35(1), 7–10
- Finger, S., & Dixon, J. R. (1989). A Review of Research in Mechanical Engineering Design. Part I: Descriptive, Prescriptive, and Computer-based Models of Design Processes. Research in Engineering Design, 1(1), 51–67
- Finger, S., & Dixon, J. R. (1989). A Review of Research in Mechanical Engineering Design. Part II: Representations, Analysis, and Design for the Life Cycle. Research in Engineering Design, 1(2), 121–137
- Simon, H. A. (1960). The New Science of Management Decision. Harper and Row, New York, NY
- Nikolaidis, E., Ghiocel, D. M., & Singhal, S., (Eds.) (2004). Engineering Design Reliability Handbook. CRC Press, Boca Raton, FL
- Keeney, R. L. (2004). Stimulating Creative Design Alternatives Using Customer Values. IEEE Transactions on Systems Man and Cybernetics. Part C. Applications and Reviews, 34(4), 450–459
- Suh, N. P. (1990). The Principles of Design. Oxford University Press, Oxford
- Browning, T. R. (2001). Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions. IEEE Transactions on Engineering Management, 48(3), 292–306
- ProSTEP. (2008) HOPE: Fields of Research for the Holistic Optimization of Product Creation, White Paper. ProSTEP iViP Association
- Ueda, K., Fujii, T., & Inouel, R. (2007). An Emergent Synthesis Approach to Simultaneous Process Planning and Scheduling. Annals of CIRP, 56(1), 463–466
- Ueda, K., Kito, T., & Takenaka, T. (2008). Modelling of Value Creation Based on Emergent Synthesis. Annals of CIRP, 57(1), 473–476
- Rausand, M., & Høyland, A. (2004). System Reliability Theory: Models, Statistical Methods, and Applications (2nd ed.). Wiley. p. 88
- Hansen, F. (1974). Konstruktionswissenschaft – Grundlagen und Methoden. 2nd ed. Hanser-Verlag, Munchen-Wien. http://www.dmg-lib.org/dmglib/main/portal.jsp?mainNaviState=browsen.docum.meta&id=4892009
- Hansen, F. (1966). Konstruktionssystematik. 3rd ed. VEB-Verlag Technik, Berlin. http://www.dmg-lib.org/dmglib/main/portal.jsp?mainNaviState=browsen.docum.meta&id=4886009
- Hubka, V. (1976). Theorie der Konstruktionsprozesse. Springer, Berlin/ Heidelberg
- Hubka, V., & Eder, W. E. (1996). Design Science. Springer, London
- Andreasen, M. M. (1994). Modelling- The Language of the Designer. Journal of Engineering Design, 5(2), 103–115
- Andreasen, M. M., & Hein, L. (1987). Integrated Product Development. Springer, New York, NY
- Koller, R. (1998). Konstruktionslehre fur den Maschinenbau. 4th ed. SpringerVerlag
- Pahl, G., Beitz, W., Feldhusen, J., & Grote, K-H. (2007). Engineering Design – A Systematic Approach. Wallace, K., Blessing, L. (Trans. and Eds.) 3rd ed. Springer, Berlin
- Mizuno, S., & Akao, Y. (1993). QFD: The Customer-driven Approach to Quality Planning & Deployment. Asian Productivity Organization, Tokyo
- Roth, K. (1982). Konstruieren mit Konstruktionskatalogen, vol. I. Konstruktionslehre. Springer, Berlin
- Roth, K. (1982). Konstruieren mit Konstruktionskatalogen, vol. II. Kataloge. Springer, Berlin
- Taguchi, G. (1987). The System of Experimental Design Engineering Methods to Optimize Quality and Minimize Cost, vols. 1 and 2. American Supplier Institute, Dearborn, MI
- Pugh, S. (1991). Total Design: Integrated Methods for Successful Product Engineering. Prentice Hall, New York
- Altshuller, G. (1999). The Innovation Algorithm. Technical Innovation Center, Worcester, MA
- Cavallucci, D., & Weil, R. (2001). Integrating Altshuller’s Development Laws for Technical Systems into the Design Process. Annals of CIRP, 50(1), 115–120
- Journal of the European TRIZ Association: INNOVATOR, ISSN 1866-4180 https://etria.eu/portal/index.php/innovator-etria-official-journal
- Grabowski, H., & Lossack, R. (2000). The Axiomatic Approach in the Universal Design Theory. Proceedings of the First International Conference on Axiomatic Design, Cambridge, MA, June 21–23
- Grabowski, H., Rude, S., Grein, G., Meis, E., & El-Mejbir, E. (1998). Universal Design Theory: Elements and Applicability to Computers. In Grabowski, H., Rude, S., Grein, G. (Eds.) Universal Design Theory. Shaker Verlag, Aachen, pp. 209–220
- Ullman, D. G. (2002). The Mechanical Design Process. McGraw Hill
- Ulrich, K. T., & Eppinger, S. D. (2007). Product Design and Development. MсGraw-Hill, New York


