DOI: 10.52150/2522-9117-2023-37-358-373
Razdobreev Valerii Guriiovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-7402-7992. E-mail: office.isi@nas.gov.ua
Prykhodko Ihor Yuriiovych, D. Sc. (Tech.), Senior Researcher, Head of Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-5651-8106. E-mail: isi@ukr.net
Kluychnikov Kyrylo Yuriiovych, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-2465-3244
Palamar Dmytro Gryhorovych, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-9503-3248
Leshchenko Oleksandr Ivanovych, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000- 0003-1877-8358
CHOICE OF THE METHOD OF DETERMINING THE ENERGY-FORCE PARAMETERS OF THE PROCESS OF DRAWN OF THE STACK THROUGH A BENDING-TENSIONING DEVICE
Abstract. In the practice of manufacturing metal products, shaped profiles of a complex configuration, including thin-walled, strip and periodic cross-section profiles, play a special role. High-quality, high-precision shaped profiles with different ratio of the width to the height of the tape, which are produced in small-tonnage batches abroad and are widely used in machine-building, instrument-building, aircraft-building and other industries. In Ukraine, the production of high-precision shaped profiles is extremely limited, and the production of strip-type profiles is completely absent. Tape-type shaped profiles are usually produced by cold deformation on drawing, flattening or sheet-rolling mills. The use of drawing in roller drawing in comparison with cold rolling and flattening has higher technological flexibility, does not require large capital costs for the organization of production. Compared to traditional drawing with the use of monolithic drags, the drawing process in roller drags has the following advantages: lower energy consumption; higher permissible deformation per pass; higher homogeneity of product properties, expensive drawing lubricants are not used, additional special metal preparation operations for drawing are not carried out (phosphating, oxalate, copper plating, brown coating, etc.). The main drawback of the roller drag method is the presence of traction force. Tensions that stretch the profile in combination with a decrease in plasticity of the metal during the drawing process can lead to the destruction of the rolled product. In order to eliminate the harmful effects of residual tensile stresses, it is necessary to either eliminate them or convert them into compressive stresses that increase the workability of the steel billet. For this purpose, two methods are used in the practice of wire production: thermal and mechanical. The thermal method used in industry requires significant energy consumption. The mechanical method has several varieties, of which the most rational is the process of sign-changing deformation with wire stretching in a bending-stretching device. The process of cold deformation with the use of a bending-stretching device is carried out with a counter-tension, the value of which is equal to the effort of drawing the workpiece through this device. The counter-tension determines the force of cold deformation and the power of the drive motor of the traction device, the value of the maximum possible deformation during the first pass, the stability of the cold deformation process and other parameters. When working with a large back tension, frequent breaks in the rolling stock are possible. Therefore, it is very important to correctly calculate the force of cold deformation using bending and stretching roller devices. The purpose of the work: on the basis of the performed analysis, to choose a technique for determining the energy parameters of the process of drawing the staffs through the bending and stretching device. As a result of the analysis, the method of calculating the force parameters of the process and the change in shape of the wire rod in the bending-stretching roller device with comprehensive consideration of the mutual dependence of the degree of deformation, the tensile strength of the metal, and the changes in mechanical properties during the deformation process was determined. The headquarters in the roller bending-tension device adopted the methodology that was developed earlier in the ISI of the National Academy of Sciences of Ukraine. The chosen methods serve in the future for the development of a mathematical model for calculating energy parameters and shape change parameters of the process of stretching the staffs through the bending-stretching device, which will allow for a reasonable choice of the parameters of the sign-changing bending of the staffs.
Key words: method of determining power parameters, sign-changing deformation with stretching, tape type profiles, mechanical properties, bending and stretching roller device.
DOI: https://doi.org/10.52150/2522-9117-2023-37-358-373
For citation: Razdobreev, V. G., Prykhodko, I. Yu., Kluychnikov, K. Yu., Palamar, D. G., & Leshchenko, A. I. (2023). Choice of the method of determining the energy-force parameters of the process of drawn of the stack through a bending-tensioning device. Fundamental and applied problems of ferrous metallurgy, 37, 358-373. https://doi.org/10.52150/2522-9117-2023-37-358-373
References
- Gul’ko, V. I., Voytsekhovskiy, V. A., & Grigor’yev, A. K. (1989). Proizvodstvo profiley i provoloki v rolikovykh volokakh. Udmurtia
- Krasavin, B. N., Boyarshinov, M. I., & Polyakov, M. G. (1971). Ispol’zovaniye rolikovykh volok za rubezhom. Hardware production, 2, 11-16
- Vydrin, A. V., Shtern, A. A., Popov, Yu. N., & Barichko, B. V. (2004). Povysheniye effektivnosti protsessov volocheniya v rolikovykh volokakh, Trudy pyatogo kongressa prokatchikov, Moskva, Chermetinzhiring
- Khramkov, V. E., Stern, A. A., & Yakovleva K. Yu. (2015). K voprosu proyektirovaniya rolikovykh volok so smeshchennymi parami rolikov. Vestnik SUSU, 15(4), 128-134
- Tarnavskiy, A. L. (1965). Silovyye usloviya volocheniya s ispol’zovaniyem rolikovykh okalinolomateley. Steel, 2, 182-184
- Yukhvets, I. A. (1965). Volochil’noye proizvodstvo: Ch. 1. Metallurgiya
- Nedoviziy, I. N., Petrukhin, S. I., & Komarov, A. G. (1979). Sovmeshcheniye protsessov proizvodstva provoloki. Metallurgiya
- Shumilin, I. M. (1967). Volocheniye stal’noy provoloki s primeneniyem mekhanicheskogo udaleniya okaliny. Manufacturing of industrial metal products, 1, 129-148
- Dolzhanskiy, A. M., Lomov, I. N., & Klyuyev, D. Yu. (2000). Effektivnost’ ispol’zovaniya mekhanicheskogo udaleniya okaliny pri volochenii stal’noy katanki. Metallurgical and mining industry, 3, 60-61
- Kokovikhin, Yu. I. (1995). Tekhnologiya staleprovolochnogo proizvodstva. Tekhnika
- Bitkov, V. V. (2004). Tekhnologiya i mashiny dlya proizvodstva provoloki. UrO RAN
- Radionova, L. V., Kharitonov, V. A., & Safonov, Ye. V. (2001). Volocheniye vysokouglerodistoy provoloki s primeneniyem znakoperemennogo izgiba. Magnitogorsk State Technical University, 1-10
- Kireyev, I. N. (1968). Podgotovka katanki k volocheniyu s predvaritel’noy lomkoy okaliny. Steel, 3, 281-282
- Lomov, I. N. (2003). Development and mastery of effective technology for dry drawing of steel wire rod after mechanical descaling (Masters dissertation). National Metallurgical Academy of Ukraine, Dnepropetrovsk
- Zalazinskiy, A. G., & Bitkov, V. V. (1995). Raschet usiliya protyagivaniya katanki cherez roliki okalinolomatelya. Steel, 8, 54-56
- Dolzhanskiy, A. M., Lomova, O. B., Yermakova, O. S., & Lomov, I. N. (2008). Metod rascheta parametrov besfil’yernogo volocheniya stal’noy katanki v rolikovom okalinolomatele. Metallurgical and mining industry, 2, 53-57
- Dolzhanskiy, A. M., Lomov, I. N., & Lomova, O. B. (2007). Opredeleniye temperatury pri protyazhke katanki cherez rolikovyy okalinolomatel’. Theory and practice of metallurgy, 6, 40-45
- Radionova, L. V. (2013). Matematicheskoye modelirovaniye znakoperemennoy deformatsii izgibom v mnogorolikovom ustroystve [Mathematical modeling of alternating bending deformation in a multi-roller device]. Izv. Universities. Ferrous metallurgy, 9, 62-66
- Korolev, A. A. (1985). Konstruktsiya i raschet mashin mekhanizmov prokatnykh stanov. Metallurgiya
- Storozhev, M. V., & Popov Ye. A. (1971). Teoriya obrabotki metallov davleniyem. Mashinostroyeniye
- Dolzhanskiy, A. M., & Yermakova, O. S. (2006). Deformatsiya katanki v rolikovom okalinolomatele. Metallurgical and mining industry, 1, 58-61
- Kharitonov, V. A., Ivantsov, A. B., & Kharitonov, V. A. (2010). Obrabotka buntovoy armaturnoy stali po skheme «rastyazheniye – znakopremennyy izgib» (teoriya, tekhnologiya, oborudovaniye). Metallurgist, 4, 29-33
- Vorobey, S. A. (2016). Razrabotka skvoznykh tekhnologiy proizvodstva goryache- i kholodnodeformirovannogo armaturnogo prokata, obespechivayushchikh povysheniye plastichnosti pri zadannom urovne prochnosti. 0112U360: Iron and Steel Institute of Z.I. Nekrasov National Academy of Science of Ukraine, National Academy of Science of Ukraine
