DOI: 10.52150/2522-9117-2023-37-184-200
Kislyakov Volodymyr Hennadiiovych, Ph. D. (Tech.), Senior Researcher, Head of Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-1775-5050. E-mail: ovoch-isi@outlook.com
Togobitskaya Daria Mykolaivna, D. Sc. (Tech.), Professor, Head of Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-6413-4823. E-mail: dntog@ukr.net
Molchanov Lavr Serhiiovych, Ph. D. (Tech.), Head of Department, Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-6139-5956. E-mail: metall729321@gmail.com
Yelisieiev Volodymyr Ivanovych, Ph. D. (Pys.-Math.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-4999-8142. E-mail: ovoch-isi@outlook.com
Likhachov Yurii Mykhailovych, Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-3168-7813
ANALYSIS OF MODELS OF NON-AGGREGATE CAST IRON PROCESSING PROCESSES
Abstract. The aim of this paper is to perform a generalized analysis of studies on modeling the processes of out-of-furnace treatment of cast iron. Mathematical models are classified according to the basic principles of modeling. A description of different models based on different principles is given, depending on their type and the differences between them. A more detailed analysis of some of the fundamental models and expressions obtained in their construction is carried out. An example of models built on experimental data is given. Neural network models consist of artificial neurons that are connected to each other by means of connecting weights, i.e., model parameters, in the form of layers. Neurons are a set of mathematical functions that modify the input data to obtain an estimate of the desired result. A large number of network parameters makes training a neural network a cumbersome computational process. The large number of network connection weights that need to be optimized when training such models usually requires a large amount of input data. The paper presents domestic achievements in the construction of mathematical models of the out-of-furnace iron treatment process. The principles of creating an integrated database that summarizes information on the parameters of various technologies for desulphurization of cast iron, including the developed system unit of the information retrieval system, are described; the concept of an expert system for making decisions on process control and selection of a rational technology for out-of-furnace desulphurization of cast iron is developed; the variant of the developed information and mathematical support of the expert system with the module for out-of-furnace treatment of cast iron with granular magnesium and coinjection of magnesium and lime is described; the results of the study are presented. The paper describes the models devoted to numerical and physical modeling of the phenomena that occur in the ladle during injection, as well as to the study of the regularities of the gas-powder flow.
Key words: desulfurization, cast iron, model, classification, analysis.
DOI: https://doi.org/10.52150/2522-9117-2023-37-184-200
For citation: Kislyakov, V. H., Togobitskaya, D. M., Molchanov, L. S., Yelisieiev, V. I., & Likhachov, Y. M. (2023). Analysis of models of non-aggregate cast iron processing processes. Fundamental and applied problems of ferrous metallurgy, 37, 184-200. https://doi.org/10.52150/2522-9117-2023-37-184-200
References
1. Oeters, F., Strohmenger, P., & Pluschkell, W. (1973). Kinetik der Entschwefelung von Roheisenschmelzen mit Kalk und Erdgas. Arch. Eisenhüttenwes, 44, 727
2. El-Kaddah, N., & Szekely, J. (1981). Mathematical model for desulphurization kinetics in argon-stirred ladles Ironmak. Steelmak, 8, 269–78
3. Deo, B., & Grieveson P. (1988). Desulfurization of molten pig iron containing aluminium by powder injection. Steel Res., 59, 263
4. Deo, B. & Boom, R. (1993). Fundamentals of Steelmaking Metallurgy, Prentice Hall International
5. Zou, Z., Zou, Y., Zhang, L. & Wang, N. (2001). Mathematical Model of Hot Metal Desulphurization by Powder In jection. ISIJ International, 41, 66-69
6. Visser, H.-J. (2016). PhD Thesis. The Hampering Effect of Precipitated Carbon on Hot Metal Desulfurization with Magnesium, Delft University of Technology, Delft, The Netherlands
7. Ranz, W. & Marshall, W. (1952). Evaporation from Drops. Chemical Engineering Progress, 48, 141-146
8. Quinn, S. L., & Vaculik, V. (2002). Improving the Desulfurization Process Using Adaptive Multivariate Statistical Modeling. AISE Steel Technol. (USA), 79(10), 37–41
9. Bhattacharya, T., Nag, S., & Lenka, S. N. (2004). Analysis of DS Reagent Consumption Using Multivariate Statistical Modeling. Tata Search., 1, 215–223
10. Vuolio, T., Visuri, V.-V., Sorsa, A., Ollila, S., & Fabritius, T. (2020). Application of a Genetic Algorithm Based Model Selection Algorithm for Identification of Carbide-Based Hot Metal Desulfurization. Appl. Soft Comput. J., 92, 106330
11. Visuri, V.-V., Vuolio, T., Haas, T., & Fabritius, T. A. (2020). Review of Modeling Hot Metal Desulfurization. Steel Res. Int., 91(4), 1900454
12. Togobickaya, D. N., Molchanov, L. S., Vergun, A. S., Kislyakov, V. G., Lihachev, Yu. M., & Hodotova, N. E. (2020). Informacionno-matematicheskoe obespechenie tekhnologii desul’furacii chuguna. Fundamental and applied problems of ferrous metallurgy, 34, 62–72
13. Farias, L. R., & Irons, G. A. (1986). A multi-phase model for plumes in powder injection refining processes. Metall. Trans. B, 17, 77
14. Farias, L. R., & Irons, G. A. (1985). A Unified Approach to Bubbling-Jetting Phenomena in Powder Injection into Iron and Steel. Metall. Trans. B., 16(2), 211–225
15. Shevchenko, S. A., Shevchenko, A. F., & Eliseev, V. I. (2008). Zakonomernosti vnedreniya chastic magniya v rasplav chuguna pri vduvanii cherez furmu bez isparitelnoj kamery na vyhode. Fundamental and applied problems of ferrous metallurgy, 17, 111-115
16. Yelisieiev, V. I., Manachyn, I. O., Shevchenko, A. P., & Shevchenko, S. A. (2022). Otsinka parametriv zanurennia chastynok reahentu z hazom u rozplav pry inzhektsiinii pozapichnii desulfuratsii chavunu. Fundamental and applied problems of ferrous metallurgy, 36, 172-181. https://doi.org/10.52150/2522-9117-2022-36-172-181
