DOI: 10.52150/2522-9117-2022-36-325-342

Kononenko Ganna Andriivna, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-7446-4105. E-mail: perlit@ua.fm

Kimstach Tetiana Volodymyrivna, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-8993-201X. E-mail: 1375tatyana@gmail.com

Safronova Olena Anatoliivna, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-4032-4275. E-mail: safronovaaa77@gmail.com

Podolsky Rostyslav Viacheslavovych, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-0288-0641. E-mail: rostislavpodolskij@gmail.com

Puchikov Oleksandr Volodymyrovych, Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-4119-6399. E-mail: okc.testcenter@ukr.net

Klinova Olha Pylypivna, Lead Engineer, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107

MODERN PERSPECTIVE METAL MATERIALS FOR ARMORED OBSTACLE (OVERVIEW)

Summary. To date, means of protection of all types of armored vehicles against damage by small arms are actively being developed, new grades of steel with increased anti-projectile resistance indicators are being developed, which ensure a reduction in the metal content of structures while simultaneously increasing the tactical and technical characteristics of the product. The constant increase in requirements for the protection of armored vehicles, caused by the improvement of highly effective means of attack, dictates the need to find new approaches to increase the dynamic stability of armored steels using modern metallurgical, material science and construction achievements. The development and design of workable materials and structures of armor protection is a complex scientific and technical problem. The purpose of the work is to determine, based on the analysis of literary sources, the main trends in the development and improvement of modern metal materials for the manufacture of armored obstacles, which have high dynamic resistance against modern highly effective small arms weapons. The paper analyzes the most widely used metal materials for the manufacture of armored barriers, presents information about their advantages and disadvantages, and provides an assessment of the prospects for further development of this industry. It is noted that the current concept of weapons development is aimed at the use of high-tech materials and innovative methods that allow improving protective functions without increasing the mass and dimensions of armor protection. Currently, many different materials are used to create armor protection: metal plates based on steel, titanium, aluminum and their alloys, aramid or polyethylene fibers, as well as ceramics based on boron carbides, silicon, and others. In accordance with the existing concept of increasing the effectiveness of armor protection and ensuring a combination of firepower, security and mobility, the use of promising materials for the creation of armor protection provides an additional reserve for increasing the combat and military-economic efficiency of military equipment.

Key words: armor steels, dynamic stability, armored vehicles, aluminum-based alloys, titanium alloys.

DOI: https://doi.org/10.52150/2522-9117-2022-36-325-342

For citation: Suchasni perspektyvni metalevi materialy dlia bronepereshkod (ohliad) [Modern perspective metal materials for armored obstacle (overview)] / G. A. Kononenko, T. V. Kimstach, O. A. Safronova, R. V. Podolsky, O. V. Puchikov, O. P. Klinova // Fundamental and applied problems of ferrous metallurgy. 2022. Collection 36. P. 325-342. [In Ukrainian]. https://doi.org/10.52150/2522-9117-2022-36-325-342

References

  1. Ihnatova, A. M., & Artemov A. O. (2012). Analiticheskiy obzor sovremennykh i perspektivnykh materialov i konstruktsiy bronepregrad i zashchit ot porazheniya [Analytical review of modern and promising materials and structures of armored barriers and protection against defeat]. Fundamentalnyye issledovaniya, 6, 101-105
  2. Khilmes, R. (2019). Usovershenstvovaniye zashchity bronirovannykh mashin. Vozmozhnosti i granitsy povysheniya boyesposobnosti [Improving the protection of armored vehicles. Possibilities and limits of increasing combat capability]. http://btvt.info/3attackdefensemobility/improve_armor.htm
  3. Metall. (2022). Sostav metalla dlya broni [Composition of metal for armor]. https://stal-kom.ru/sostav-metalla-dlya-broni/
  4. Yurasov, I. V. (2019). K istorii proizvodstva tankovoy broni v SSSR [On the history of the production of tank armor in the USSR]. http://btvt.info/5library/vbtt_1974_05_armor_history.htm
  5. Gladyshev, S. A., & Grigoryan ,V. A. (2010). Bronevyye stali [Armor steel]. Intermet Inzhiniring
  6. Shadrin, I. D., Khmelnikov, E. A., Vender, I. I., Zavodova, T. E., & Smagin, K. V. (2018). Analiz bronevoy zashchity tankov [Tank armor analysis]. Interekspo geo-sibir, 7, 167-177
  7. Gotalsky, Yu. N. (1981). Svarka raznorodnykh staley [Welding of dissimilar steels].Tekhnika
  8. Barenyi, I., Hires, O., & Liptak, P. (2013). Changes in Mechanical Properties of Armoured UHSLA Steel ARMOX 500 After Over Tempering. Problems of Mechatronics. Armament, Aviation, Safety Engineering, 4, 7-14
  9. Barenyi, I. (2012). Secondary processing of UHSLA ARMOX 500 steel with heat based technologies. University Review, 6(2), 6-9
  10. Рromplace. (2019). Kak ispolzuyetsya bronevaya stal [How armor steel is used]. https://promplace.ru/vidy-metallov-i-klassifikaciya-staty/bronevaya-stal-1516.htm
  11. Grigoryan, V. A., Kobylkin, I. F., Marinin, V. M., & Chistyakov, E. N. (2008). Materialy i zashchitnyye struktury dlya lokalnogo i individualnogo bronirovaniya [Materials and protective structures for local and individual reservations]. Izd. RadioSoft
  12. Kobylkin, I. F., & Selivanov, V. V. (2014). Materialy i struktury legkoy bronezashchity [Materials and structures of light armor protection]. Izdatelstvo MGTU im. N. E. Baumana, 192
  13. “Evropeyskaya metallurgicheskaya kompaniya”. (2022). Iznosostoykaya i zashchitnaya stal MIILUX [Wear-resistant and protective steel MIILUX]. https://emk24.ru/wiki/spetsialnye_stali/iznosostoykie-stali-miilux_8710245/
  14. Shanghai Bozhong Metal Group Co., Ltd. Ultra High Hard Armor–Mars 240 For Sale. (2015). http://www.manufacturer.cc/product-detail/mil-dtl-46100-reve-14720288031294656.html
  15. Babinets, A. A., Ryabtsev, I. A., & Panfilov, A. I. (2018). Materialy dlya individualnoy bronezashchity (Obzor) [Materials for individual armor protection (Review)]. Avtomaticheskaya svarka, 8, 45-51
  16. Rosenberg, Z., & Dekel, E. (2012). Terminal Ballistics. Springer-Verlag Berlin Heidelberg
  17. Vysokovsky, S. I., Guglin, N. N., Levin, L. S., Maresev, M. I., & Filorikyan, B. K. (1976). O putyakh povysheniya protivosnaryadnoy stoykosti katanoy stalnoy broni dlya tankov. Voprosy oboronnoy tekhniki. Seriya ХХ [On ways to increase the anti-ballistic resistance of rolled steel armor for tanks. Issues of defense technology. Series XX], 63. http://btvt.info/5library/vop_1976_btk1.htm
  18. Kutsova, V. Z., Kovzel, M. A., & Nosko, O. A. (2008). Lehovani stali ta splavy z osoblyvymy vlastyvostiamy [Alloy steels and alloys with special properties]. NMetAU
  19. Parusov, E. V., Gubenko, S. I., Sychkov, A. B., Chuiko, I. N., Sagura, L. V., & Denisenko, A. I. (2018). Influence of the Structural Parameters of High-Carbon Steel on the Impact Strength. Steel in Translation, 48(12), 812–817. https://doi.org/10.3103/S0967091218120100
  20. Parusov, E. V., Sukhomlin, G. D., Gubenko, S. I., Sychkov, A. B., Denisenko, A. I., & Kamalova, G. Ya. (2018). Evolution of the Defect Structure of Pearlitic Steel in Cold Deformation. Steel in Translation, 48(7). 472–477. https://doi.org/10.3103/S0967091218070124.
  21. Parusov, E. V., Gubenko, S. I., Sychkov, A. B., Chuiko, I. N., Sagura, L. V., & Kamalova, G. Ya. (2019). Structural Evolution of Thin-Plate Pearlite in Wire-Blank Production. Steel in Translation, 49(5), 350–356. https://doi.org/10.3103/S0967091219050115
  22. Babachenko, O. I., Balakhanova, T. V., Safronova, O. A., & Kononenko, G. A. (2022). Doslidzhennia vplyvu spivvidnoshennia vmistu Si/Mn na dendrytnu strukturu stalei dlia zaliznychnykh osei [Study of the influence of the Si/Mn content ratio on the dendritic structure of steels for railway axles]. Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni, 1, 6-12. https://doi.org/10.15588/1607-6885-2022-1-1
  23. Babachenko, O. I., Kononenko, G. A., Podolskyi R. V., Safronova, O. A., & Kimstach, T. V. (2021). Stali dlia bronovoho zakhystu [Steel for armor protection]. Materialy IV Mizhnarodnoi konferentsii “Innovatsiini tekhnolohii v nautsi ta osviti. Yevropeiskyi dosvid”, 129-135
  24. Vinarova, C. M. (Ed.). (1961). Bor. kaltsiy. niobiy i tsirkoniy v chugune i stali [Bor. Calcium. Niobium and zirconium in iron and steel]. Metallurgizdat
  25. Рulse. (2019). Alyuminiyevaya bronya dlya boyevykh mashin [Aluminum armor for combat vehicles]. https://pulse.mail.ru/article/alyuminievaya-bronya-dlya-boevyh-mashin-8
  26. Artsruni, A. A., Kupryunin, D. G., & Zazhilov, A. A. (2022). Alyuminiyevaya bronya kak alternativa stalnoy broni. Oblast effektivnosti [Aluminum armor as an alternative to steel armor. Efficiency area]. http://btvt.info/5library/alumin_nii.htm
  27. Jena, P.K., Savio, S.G., Kumar, K. S., Madhu, V., Mandal, R. K., & Singh, A. K. (2017). An experimental study on the deformation behavior of Aluminium armour plates impacted by two different non-deformable projectiles. Procedia Engineering, 173, 222-229. https://doi.org/10.1016/j.proeng.2016.12.001
  28. Gooch, W. A., Burkins, M. S., & Squillacioti, R. J. (2007). Ballistic testing of commercial aluminum alloys and alternate processing techniques to increase the Availability of aluminum armor. 23rd International symposium on ballistics tarragona, 981-988.
  29. Doherty K., Squillacioti R., Cheeseman B., Placzankis B., & Gallardy D. (2012). Expanding the availability of lightweight aluminum alloy armor plate procured from detailed military specifications. A reprint from the 13th International Conference on Aluminum Alloys, 541–546. https://doi.org/10.1002/9781118495292.ch79
  30. Greshta, V. L., Lisitsya, O. V., & Stepanova, L. P. (2014). Kolorovi metaly ta splavy na yikh osnovi : navchalnyi posibnyk [Colored metals and alloys on their bases: manual]. ZNTU
  31. Entoni, U. U., & Boll Alyuminiy M. D. (1989). Svoystva i fizicheskoye metallovedeniye: Spravochnoye izdaniye [Properties and Physical Metallurgy: Reference Edition]. Metallurgiya
  32. Kupryunin D. G., Gavze A. L., & Chusov S. Yu. (2018). Ispolzovaniye titanovykh splavov dlya konstruktsionnykh i bronevykh detaley izdeliy avtobronetankovoy voyennoy tekhniki i sredstv individualnoy bronezashchity (SIB) [The use of titanium alloys for structural and armor parts of products of armored military equipment and personal armor protection (PIB)]. Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva protivodeystviya terrorizmu, 7-8, 121-122
  33. Anastasiadi, G. P., & Silnikov, M. V. (2004). Rabotosposobnost bronevykh materialov [The performance of armor materials]. Asterion
  34. EverySpec LLC (2022). Mil-dtl-46077g. Detail specification, armor plate, titanium alloy, weldable (28-SEP-2006) [SUPERSEDING MIL-A- 46077E]. http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-DTL/MIL-DTL-46077G_13613/
  35. Gavze, A. L., Chusov, S. Yu., Yankov, V. P., & Tetyukhin, V. V. (2013). Razrabotka novykh ekonomnolegirovannykh titanovykh splavov dlya sredstv individualnoy bronezashchity i izdeliy bronetekhniki. Perspektivy ikh primeneniya [Development of new economically alloyed titanium alloys for personal armor protection and armored vehicles. Prospects for their application]. Titan, 1, 46-48
  36. Makkuin R., Marsh S., Teylor D., Fritts D., & Karter U. (1973). Uravneniye sostoyaniya tverdykh tel po rezultatam issledovaniya udarnykh voln [The equation of state of solids based on the results of the study of shock waves]. Mir
  37. Kanel G. I., Razorenov S. V., Utkin A. V., & Fortov V. E. (1996). Udarno-volnovyye yavleniya v kondensirovannykh sredakh [Shock-wave phenomena in condensed media]. Yanus-K

Фундаментальные и прикладные проблемы черной металлургии
Logo