DOI: 10.52150/2522-9117-2022-36-95-108
Muravyova Iryna Hennadiivna, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-5926-7787. E-mail: irinamuravyova@gmail.com
Ivancha Mykola Hryhorovych, Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-5366-9328. E-mail: otosu.to1@gmail.com
Shcherbachov Vadym Rodionovych, Leading Engineer, Ph. D. Student, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-6734-0451
Vіshnyakov Valerii Ivanovych, Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-5538-6962
Yermolina Kateryna Petrivna, Lead Engineer, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-6819-9886
Biloshapka Olena Oleksiivna, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-3103-0512. E-mail: beloshapka@zadarma.com
Khodotova Nadiia Yevstakhivna, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-6958-4636
METHOD OF DETERMINING THE POSITION AND SHAPE OF THE COHEZIVE ZONE IN A BLAST FURNACE USING GAS FLOW TEMPERATURE DISTRIBUTION INDICATORS
Summary. The purpose of the work is the development of analytical and indirect methods for determining the shape and position of the plastic zone of a column of blast furnace charge materials. It is shown that the development of new mathematical models and methods for operational determination of the parameters of the cohezive zone for installation on blast furnaces of various means of controlling the distribution of the charge and gas flow has the greatest potential for further use in solving the problems of effective control of blast furnace melting. A new method for determining the parameters of the plastic zone (shape, thickness, and position) in the blast furnace is proposed, which is a combination of known and improved mathematical models as a result of research: loading of charge materials into the blast furnace, determination of melting temperatures and softening of iron-containing components of the charge in its various zones, determination parameters of the charge column in the dry zone of the blast furnace, determination of the area of the melting surface and a new method of determining the position of the softening and melting lines in the blast furnace using information on the means of controlling the temperature distribution of the gas flow and the surface of the charge backfill. The configuration of the melting line (surface) is determined on the basis of the similarity of this line to the temperature distribution curve of the gas flow (filling surface) on the furnace surface, as well as the equality of the area of the side surface of the figure of rotation of the forming line around the axis of the furnace and the calculated melting area.
The calculation of the coordinates of the points of the softening line is based on the results of mathematical modeling of loading processes and the distribution of charge components along the radius of the blast furnace top, which provides the possibility of determining the component composition of iron ore layers of charge materials in a given zone of the furnace and forecasting the formation of melts and their properties with the help of high-temperature transformation models. Unlike the known approach, according to which when determining the area of the melting surface, the amount of heat in the lower part of the furnace is set as a constant, the proposed method implies the calculation of this value taking into account the current technological conditions of blast furnace melting.
Key words: blast furnance, cohesion zone parametrs, temperature measuring probes, mathematical model, softening and melting lines, the method of determining the cohesive zone.
DOI: https://doi.org/10.52150/2522-9117-2022-36-95-108
For citation: Metod vyznachennia polozhennia i formy plastychnoi zony v domennii pechi z vykorystanniam pokaznykiv rozpodilu temperatury hazovoho potoku [Method of determining the position and shape of the cohezive zone in a blast furnace using gas flow temperature distribution indicators] / I. H. Muravyova, M. H. Ivancha, V. R. Shcherbachov, V. I. Vіshnyakov, K. P. Yermolina, O. O. Biloshapka, N. Ye. Khodotova // Fundamental and applied problems of ferrous metallurgy. 2022. Collection 36. P. 95-108. [In Ukrainian]. https://doi.org/10.52150/2522-9117-2022-36-95-108
References
- Bolshakov, Y., Muraveva, Y. H., Hladkov, N. A., & Beloshapka, E. A. (2011). Analyz metodov opredelenyia formi y polozhenyia plastychnoi zony v domennoi pechy [Analysis of methods for determining the shape and position of the plastic zone in a blast furnace]. Fundamental’nye i prikladnye problemy černoj metallurgii, (23), 80-89
- Ito, M., Matsuzaki, S., Kakiuchi K., & Isobe, (2004, January). Development of Visual Evaluation and Numerical Analysis System of Blast Furnace “Development of Visual Information Technique of Blast Furnace Process Data”. Nippon Steel Technical Report, (89), 38-45
- Matsuzaki, S., Shinotake, A., Naito, M., Nishimura, T., Kunitomo, K., & Sugiyama, T. (2006, July). Development of Mathematical Model of Blast Furnace. Nippon Steel Technical Report, (94), 87-95
- Fu, D., Zhou, C,, Zhao, Y., D’Alessio, J., & Ferron, K. J. (2011). Numerical Simulation Of Blast Furnace Shaft Process. Proceedings of 4th International Conference on Modeling and Simulation of Metallurgical Processes in Steelmaking. Düsseldorf, 27 June – 1 July 2011. (p. 1-10)
- Ghosh, S., Viswanathan, N. N., & Ballal, B. (2017). Flow Phenomena in the Dripping Zone of Blast Furnace – A Review. Steel research int. 88(9), 1600440
- Fu, D., Chen, Y., Zhao, Y., D’Alessio, J., Ferron, K., & Zhou, C. Q. (2014, March). CFD modeling of multiphase reacting flow in blast furnace shaft with layered burden. Applied Thermal Engineering, 66(1-2), 298-308. https://doi.org/10.1016/j.applthermaleng.2014.01.065
- Zhou, P., Li, H., Shi, P., & Zhou, C. (2016). Simulation of the transfer process in the blast furnace shaft with layered burden. Applied Thermal Engineering, 95, 296–302. https://doi.org/10.1016/j.applthermaleng.2015.11.004
- Dong, F., Yu, A. B., Cew, S. J., & Zulli, P. (2010). Modeling of Blast Furnace with Layered Cohesive Zone. Metallurgical and Materials Transactions B, 41, 330–349. http://dx.doi.org/10.1007/s11663-009-9327-y
- Jiao, L., Kuang, S., Yu, A. , Li, Y., Mao, X., & Xu, H. (2020). Three-dimensional modeling of an ironmaking blast furnace with a layered cohesive zone. Metallurgical and Materials Transactions B, 51, 258–275. https://doi.org/10.1007/s11663-019-01745-3
- Kuang S., Li Z., & Yu A. (2018). Review on modelling and simulation of blast furnace. Steel research int., 89(1)
- Ueda, S., Kon T., Kurosawa, H., Natsui, S., Ariyama, T., & Nogami, H. (2015). Influence of Shape of Cohesive Zone on Gas Flow and Permeability in the Blast Furnace Analyzed by DEM-CFD Model. ISIJ International, 55(6), 1232- http://dx.doi.org/10.2355/isijinternational.55.1232
- Li, S.Z., Cheng, J., & Ma, W.Q. (2014). A Method to Forecast the Cohesive Zone of Blast Furnace. Materials Science Forum, 471-472, 358- https://doi.org/10.4028/www.scientific.net/msf.471-472.358.
- Tovarovskyi, H. (2009). Domennaia plavka. [Blast furnace]. Porohy
- Parshakov, M., Polynov, A. A., Pavlov, A. V. et al. (2017). Nepreryvnyi avtomatycheskyi kontrol parametrov zony plavlenyia s pomoshchiu dvumernoi ma-tematycheskoi modely, funktsyonyruiushchei v realnom masshtabe vremeny v sostave ASU TP Dp-2 y DP-10 OAO “MMK”. [Continuous automatic control of the parameters of the melting zone using a two-dimensional mathematical model operating in real time as part of the automated process control system BF-2 and BF-10 of JSC MMK]. Sbornyk trudov mezhdunarodnoho Soiuza Domenshchykov, (1), 54-69
- Muraveva, H., Tohobytskaia, D. N., Semenov, Yu. S., Yvancha, N. H., Belkova, A. Y., Shumelchyk, E. Y., & Stepanenko, D. A. (2019). Sozdanye yntellektualnykh system podderzhky pryniatyia reshenyi po upravlenyiu domennoi plavkoi. Novye podkhody [Creation of intelligent decision support systems for the management of blast-furnace smelting. New approaches]. Nauk. dumka
- Parshakov, M., Polynov, A. A., Pavlov, A. V. et al. (2017). Kompleksnaia avtomatyzy-rovannaia systema kontrolia, optymyzatsyy y prohnoza domennoi plavky – pred-shestvennytsa systemy “Kohezyia” y ynstrument dlia realyzatsyy vyrabatyvaemykh eiu reshenyi [The integrated automated system for control, optimization and forecasting of blast-furnace smelting is the forerunner of the Kogeziya system and a tool for implementing the solutions developed by it]. Sbornyk trudov mezhdunarodnoho Soiuza Domen-shchykov, (1), 76-88
- Ivancha, G., Muraveva, I. G., Shumelchik, E. I., Vishnyakov, V. I., & Semenov, Yu. S. (2018). Complex Mathematical Model of the Distribution of Multicomponent Charge in a Blast Furnace. Metallurgist, 62(1-2), 95-100. http://dx.doi.org/10.1007/s11015-018-0630-1
- Hudenau, V., Stendysh, N., & Herlakh, V. (1992). Fyzycheskye uslovyia v oblasty plastycheskoi zony domennoi pechy. Chast 1. Osnovnye pryntsypy modely. [Physical conditions in the plastic zone of a blast furnace. Part 1. Basic principles of the model]. Chernye metally, (8), 34-41
- Ramm, A. N. (1960). Opredelenye tekhnycheskykh pokazatelei domennoi plavky [Determination of technical indicators of blast-furnace melting]. Lenynhrad