DOI: 10.52150/2522-9117-2019-33-143-155
Razdobreev Valery Guriyovych, PhD (Engin.), Senior Researcher, Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: v_razdobreev@mail.ru
Research of the influence of boron microallegation on the corrosion behavior of a low-carbon structural steel in various structural condition
Summary. The aim of the work is to study the effect of boron, structural features of the rolled steel of low-carbon steel in hot rolled and thermally hardened states on its corrosion resistance. Investigation of the corrosion resistance of hot-rolled and thermally hardened (quenching and tempering at temperatures of 200-600 °C) low-carbon steel St 3sp containing 0.007% B and having no boron additives was carried out on polished samples with constant immersion in room temperature acidic medium, causing corrosion with hydrogen depolarization (1 N solution of H2SO4), and with variable immersion in aggressive media, causing corrosion with oxygen depolarization (in a 3 % NaCl solution). It was found that the atmospheric corrosion rate of hot-rolled low-carbon steel with and without boron is almost the same. It was experimentally established that samples of boron-containing steel (0.007 % B), when tested in a 1 N solution of H2SO4 and when immersed in a 3 % NaCl solution in a thermally hardened state, have a lower corrosion resistance than steel without boron: the maximum corrosion losses were samples hardened and tempered at a temperature of 300 °C. As shown by studies of microstructures using an electron microscope, when tempering 300 °C, hardened boron containing steel is released, many relatively small inclusions of boron are released that contribute to the so-called structural corrosion. These finely divided inclusions, most of which are identified as Fe2B, are released from the supersaturated solid solution upon cooling and sharply reduce the resistance of steel to atmospheric corrosion. Thus, improving the hardenability of lowcarbon steel, boron significantly reduces its corrosion resistance in aggressive environments after quenching and tempering.
Keywords: low-carbon steel, low-carbon steel with boron, atmospheric corrosion, corrosion losses, microstructure, boron inclusions, hardening, tempering
References
1. Steel Statistical Yearbook 2018. World Steel Association. – [Elektronnyy resurs]. Rezhim dostupa: https://www.worldsteel.org/media-centre/pressreleases/2019/Global-crude-steel-output-increases-by-4.6–in-2018.html
2. Steel Statistical Yearbook 2017 / World Steel Association. – [Elektronnyy resurs]. Rezhim dostupa: https://www.worldsteel.org/ en/dam/jcr:3e275c73-6f11-4e7f-a5d8-23d9bc5c508f/Steel+Statistical+Yearbook+2017.pdf.
3. Odesskiy P.D. Sovremennyye stali dlya stroitel’nykh metallicheskikh konstruktsiy i voprosy ekonomicheskoy effektivnosti. Stal’. – 2018. – №12. – S. 57-61.
4. Konovalov O.F., Ryzhenkov O.A., Korolʹov V.P. Systemnyy pidkhid do monitorynhu koroziyi ta zakhystu metalevykh konstruktsiy. Fizykokhimichna mekhanika materialiv. – 2004. –№ 5. – S. 99-103.
5. Gol’dshteyn Ya.Ye., Mizin V.G. Modifitsirovaniye i mikrolegirovaniye chuguna i stali. – M.: Metallurgiya. – 1986. – 272 s.
6. Gol’dshmidt Kh.Dzh. Splavy vnedreniya. – M.: Mir. – 1971. – T.I – 115 s. 7. Kugushin A.A. Vysokoprochnaya armaturnaya stal’ [A.A. Kugushin, I.G. Uzlov, V.V. Kalmykov i dr.]. – M.: Metallurgiya. – 1986. – 272 s.
8. Medovar B.I., Chekotilo L.V. Austenitno-boridnyye stali i splavy dlya svarnykh konstruktsiy. – K.: Naukova dumka. – 1970. – 146 s.
9. Uzlov I.G., Savenkov V.Ya., Polyakov S.N. Termicheskaya obrabotka prokata . – K.: Tekhnika. – 1981. – 159 s.
10. Novikov I.I. Teoriya termicheskoy obrabotki metallov. – M.: Metallurgiya. – 1986. – 480 s.
11. Kurdyumov G.V., Utevskiy L.M., Entin R.I. Prevrashcheniya v zheleze i stali. – M.: Nauka. – 1977. – 238 s.
12. Starodubov K.F., Uzlov I.G., Savenkov V.Ya. i dr. Termicheskoye uprochneniye prokata. – M.: Metallurgiya. – 1970. – 368 s.
13. Bigus K., Everts T., Dal’ V. Termomekhanicheskaya obrabotka konstruktsionnykh staley. Chernyye metally. – 1994. – № 1. – S. 29-35.
14. Sokol I.Ya., Ul’yanin Ye.A., Fel’dgandler E.G. i dr. Struktura i korroziya metallov i splavov. – M.: Metallurgiya. – 1989. – 400 s.
15. Mattson E. Elektrokhimicheskaya korroziya: perv. so shvedsk. [Kolotyrkina Ya.M. (red.)]. – M.: Metallurgiya. – 1991. – 157 s.
16. Berukshtis G.K., Klark G.B. Korrozionnaya ustoychivost’ metallov i metallicheskikh pokrytiy v atmosfernykh usloviyakh. – M.: Nauka. – 1971. – 159 s.
17. Keshe G. Korroziya metallov. Fiziko-khimicheskiye printsipy i aktual’nyye problemy: per. nem. – M.: Metallurgiya. – 1984. – 406 s.
18. Fishman B.P., Frisman I.A., Serzhantov V.A., Monarkhov V.V. Zashchita ot korrozii konstruktsiy i oborudovaniya metallurgicheskikh tsekhov. – K.: Tekhnika. – 1983. – 216 s.
19. Rozenfel’d I.L. Korroziya i zashchita metallov. – M.: Metallurgiya. – 1969. – 448 s.
20. Ivchenko A.V. Energosberegayushchaya TMTO-tekhnologiya izgotovleniya vysokoprochnykh krepezhnykh rez’bovykh izdeliy. Stal’. – 2018. – №10. – S. 44-48.
21. Parusov V.V. Skvoznaya tekhnologiya proizvodstva vysokoprochnogo krepezha iz borsoderzhashchikh staley. [V.V. Parusov, L.M. Katel’, V.I. Biba i dr.]. Stal’. – 1996. – №1. – S. 51-53.
22. Bobylev M.V., Koroleva Ye.G., Shtatnikov P.A. Perspektivnyye ekonomnolegirovannyye borosoderzhashchiye stali dlya proizvodstva vysokoprochnykh krepezhnykh detaley. Metallovedeniye i termicheskaya obrabotka metallov. – 2001. – №6. – S. 5-55.
23. Pokrytiya metallicheskiye i nemetallicheskiye. Metody uskorennykh korrozionnykh ispytaniy: GOST 9.308-85. – M.: Izd-tvo standartov. – 1986. – 20 s.
24. Yedinaya sistema zashchity ot korrozii i stareniya. Metally, splavy, pokrytiya metallicheskiye. Metody udaleniya produktov korrozii posle korrozionnykh ispytaniy: GOST 9.907-2007 (ISO 8407:1991). – M.:
STANDARTINFORM, 2008. – 19 s.