DOI: 10.52150/2522-9117-2025-39-12
E. V. Oliinyk1, ORCID 0000-0002-3366-3746
E. V. Parusov1, D. Sc. (Tech.), Senior Researcher, ORCID 0000-0002-4560-2043
I. M. Chuiko1,*, Ph. D. (Tech.), Senior Researcher, ORCID 0000-0002-4753-614X
O. V. Parusov1, Ph. D. (Tech.), Senior Researcher, ORCID 0000-0002-9879-6179
T. M. Golubenko1, Ph. D. (Tech.), ORCID 0000-0002-3583-211X
1Iron and Steel Institute of Z. I. Nekrasov NAS of Ukraine
*Corresponding author: ferrosplav@ukr.net
STUDY OF STRUCTURE FORMATION PATTERNS IN CrMoV1Si STEEL WIRE ROD DURING SIMULATION OF INDUSTRIAL AIR COOLING MODES
Abstract. The patterns and features of structure formation in low-carbon alloyed CrMoV1Si steel intended for welding applications were studied through laboratory simulation of industrial continuous controlled air cooling modes. In determining the temperature-time parameters of the thermal cycles, it was necessary to apply quasi-isothermal holding of the wire rod within the range of diffusion transformation of undercooled austenite, taking into account the technological specifics of operating Stelmor-type cooling lines in the production flow of rolling mills at three manufacturing plants. The fundamental distinction of the simulated modes lies in the varying cooling rates within the temperature range of the diffusion γ → α transformation, determined by the actual length of the air cooling sections on Stelmor lines, which are equipped with heat-insulating hoods, and by the minimum permissible conveyor speed for metal transport. A new scientifically grounded temperature-rate schedule of differentiated continuous air cooling for the studied steel was proposed, aimed at minimizing the amount of hard phases (martensite and bainite) formed in the metal structure: starting air cooling temperature – 950 °C; accelerated cooling within 950-850 °C at a rate of ~10 °C/s; slow cooling within 850-570 °C at a rate of ~0.4 °C/s; cooling from 570 °C to room temperature in still air. As a result, the structure of the studied steel comprises 60 vol.% polyhedral ferrite, 29 vol.% pearlite, 8 vol.% bainite, and 3 vol.% martensite in the form of relatively uniformly distributed individual grains with high hardness. Faster or slower cooling of the steel within the γ → α transformation range, compared to the developed mode, leads to an increase in the amount of quenching structures formed. The identified structural formation characteristics in CrMoV1Si steel provide the basis for the development and practical implementation of a softening thermomechanical treatment technology for wire rod made from low-carbon Cr-Mo-V welding steels under industrial conditions in metallurgical plants.
Key words: wire rod, microstructure, martensite, cooling rate, simulation.
For citation: Oliinyk, E. V., Parusov, E. V., Chuiko, I. M., Parusov, O. V., & Golubenko, T. M. (2025). Study of structure formation patterns in CrMoV1Si steel wire rod during simulation of industrial air cooling modes. Fundamental and Applied Problems of Ferrous Metallurgy, 39, 210-225. https://doi.org/10.52150/2522-9117-2025-39-12
References
1. Kerkhoff, H. J. (2014). Iron and steel industry is close to limit of its opportunities. Chernye Metally, 11, 87-92.
2. Flick, A. (2014). Picture of the future of metals – strategic visioning. Chernye Metally, 6, 81-84.
3. Parusov, V. V., Parusov, O. V., & Sychkov, A. B. (2010). Prokat iz borsoderzhaschikh stalei dlia vysokoprochnykh krepezhnykh izdelii [Boron steels rolled products for high-strength fasteners]. ART-PRESS. [In Russian].
4. Campbell, P. C., Hawbolt, E. B., & Brimacombe, J. K. (1991). Microstructural engineering applied to the controlled cooling of steel wire rod: Part I. Experimental design and heat transfer. Metal Trans A, 22, 2769-2778. https://doi.org/10.1007/BF02851371
5. Kazeminezhad, M., & Taheri, A. K. (2003). The effect of controlled cooling after hot rolling on the mechanical properties of a commercial high carbon steel wire rod. Mater Des, 24(6), 415-421. https://doi.org/10.1016/S0261-3069(03)00095-5
6. Hwang, J.-K. (2022). Effect of air temperature on the thermal behavior and mechanical properties of wire rod steel during Stelmor cooling. ISIJ Int, 62(11), 2343-2354. https://doi.org/10.2355/isijinternational.ISIJINT-2022-047
7. Lee, Y. (2004). Rod and bar rolling: theory and applications (1st ed.). CRC Press. https://doi.org/10.1201/9781482276695
8. Morales, R. D., Lopéz, A. G., & Olivares, I. M. (1991). Mathematical simulation of Stelmor process. Ironmak. Steelmak, 18, 128-138.
9. Parusov, E. V., Chuiko, I. M., Oliinyk, E. V., & Parusov, O. V. (2024). Analiz tendentsii ta problem vyrobnytstva prokatu i drotu z nyzkovuhletsevykh Cr-Mo-V stalei zvariuvalnoho pryznachennia [Analysis of trends and problems of the production of low-carbon Cr-Mo-V steel wire rod and wire for welding purposes]. Fundamental and Applied Problems of Ferrous Metallurgy, 38, 431-454. [In Ukrainian]. https://doi.org/10.52150/2522-9117-2024-38-431-454
10. Anokhov, A. E. (2021). On some features of repair welding without heat treatment of power-generating equipment made of pearlite steels. Power Technol Eng, 55, 613-619. http://doi.org/10.1007/s10749-021-01406-z
11. Hilkes, J., & Gross, V. (2013). Welding CrMo steels for power generation and petrochemical applications – Past, present and future. Biuletyn Instytutu Spawalnictwa, (2), 11-22.
12. Venkata Rao, R., & Kalyankar, V. D. (2013). Experimental investigation on submerged arc welding of Cr-Mo-V steel. Int Jour Adv Manuf Tech, 69(1-4). http://doi.org/10.1007/s00170-013-5007-9
13. Vlasov, I. V., Gordienko, A. I., Eremin, A. V., Semenchuk, V. M., & Kuznetsova, A. E. (2023). Structure and mechanical behavior of heat-resistant steel manufactured by multilayer arc deposition. Metals, 13(8), 1375. http://doi.org/10.3390/met13081375
14. Das, S., Talukdar, S., Kumar, A., & Mukhopadhyay, G. (2020). Metallurgical investigation of welding wire rod grade during processing. Engineering Failure Analysis, 118, 104884. http://doi.org/10.1016/j.engfailanal.2020.104884
15. Asati, B., Shajan, N., & Arora, K. S. (2023). Development of high strength welding consumable for arc welding carbon steels. Materials Today: Proceedings. http://doi.org/10.1016/j.matpr.2023.07.007
16. Zhao, H., Wang, S., Gao, J., Qi, J., Su, R., Zhang, H., Chen, H., Tian, Z., & Bai, L. (2022). Cause analysis of V-shaped crack pairs on drawn welding wire surface of ER70S-6 steel. Metall Res Technol, 119(5), 510. http://doi.org/10.1051/metal/2022070
17. Oliinyk, E. V., Parusov, E. V., & Chuiko, I. M. (2024, 10-11 April). Teoretychni ta tekhnolohichni zasady znemitsniuiuchoho termomekhanichnoho obroblennia stalevoho prokatu zvariuvalnoho pryznachennia [Theoretical and technological principles of softening thermomechanical processing of steel wire rod for welding purposes]. Technologies in Metallurgy and Machine building – ITMM 2024, Dnipro, Ukraine, 57-64. UDUNT. [In Ukrainian]. http://doi.org/10.34185/1991-7848.itmm.2024.01.010
18. Parusov, E. V., Chuiko, I. M., Gubenko, S. I., Oliinyk, E. V., & Parusov, O. V. (2025). Vplyv temperaturno-deformatsiinykh parametriv termomekhanichnoi obrobky na strukturu ta mekhanichni vlastyvosti nyzkovuhletsevoi lehovanoi stali [Influence of temperature‐deformation parameters of thermomechanical treatment on the structure and mechanical properties of low‐carbon alloyed steel]. Physicochemical Mechanics of Materials, 61(1), 44-51. [In Ukrainian]. https://doi.org/10.15407/pcmm2025.01.044
19. Nesterenko, A. M., Sychkov, A. B., Suhomlin, V. I., Zhukova, S. Yu., & Moroz, A. N. (2009). Osobennosti struktury katanki iz stali Sv-08KhG2SMF [Features of the structure of wire rod made of steel Sv-08KhG2SMF]. Metal Science and Heat Treatment of Metals, 8(650), 10-12. [In Russian].
20. Nesterenko, A. M., Sychkov, A. B., Suhomlin, V. I., & Zhukova, S. Yu. (2009). Issledovanie mikrostruktury katanki iz stali Sv-08KhG2SMF [Investigation of the microstructure of wire rod made of steel Sv-08KhG2SMF]. Steel, 5, 64-66. [In Russian].
21. Parusov, E. V., Sychkov, A. B., Gubenko, S. I., & Chuiko, I. M. (2016). Perspektivy ispolzovaniia ekolohicheski chistoho sposoba podhotovki poverkhnosti buntovoho prokata k volocheniiu [Prospects for using an environmentally method of preparing the surface of wire rod for drawing]. Problems of Tribology, 2(80), 74-82. [In Russian].
22. Parusov, E. V., Lutsenko, V. A., Parusov, O. V., Chuiko, I. M., Golubenko, T. M., Sivak, A. I. (2019). Rozrobka universalnoho sposobu vyznachennia pytomoi masy abo tovschyny sharu okalyny na poverkhni buntovoho prokatu pislia bezperervnoho okholodzhennia [Development of an universal method for determining the specific gravity or thickness of the scale layer on the surface of the wire rod after continuous cooling]. Bulletin of the Prydniprovsky State Academy of Civil Engineering and Architecture, 1(249-250), 33-40. [In Ukrainian]. https://doi.org/10.30838/J.BPSACEA.2312.260319.33.403
23. Chunming, W., Xingfang, W., Jie, L., & Ningan, X. (2006). Transmission electron microscopy of martensite/austenite islands in pipeline steel X70. Mater Sci Eng A, 438-440, 267-271. https://doi.org/10.1016/j.msea.2006.02.118
24. Nakagaito, T., Matsuda, H., Nagataki, Y., & Seto, K. (2017). Effects of partitioning of manganese and silicon during intercritical annealing on transformation behavior and mechanical properties of low alloyed TRIP-assisted steel sheets. ISIJ Int, 57(2), 380-387. https://doi.org/10.2355/isijinternational.ISIJINT-2016-288
25. Matsuda, F., Ikeuchi, K., Fukada, Y., Horii, Y., Okada, H., Shiwaku, T., Shiga, C., & Suzuki, S. (1995). Review of mechanical and metallurgical investigations of M-A constituent in welded joint in Japan. Trans JWRI, 24(1), 1-24.
26. Lan, L., Qui, C., Zhao, D., Gao, X., & Du, L. (2012). Analysis of martensite austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel. Mater Sci, 47, 4732-4742. https://doi.org/10.1007/s10853-012-6346-x
Received 03.08.2025
Accepted 21.10.2025
Published online 01.12.2025


