DOI: 10.52150/2522-9117-2023-37-434-446

Kononenko Ganna Andriivna, D. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
LLC “Additive laser technology of Ukraine”, Serhiy Podolynskyi Str., 31 b, Dnipro, Ukraine. ORCID: 0000-0001-7446-4105. E-mail: perlit@ua.fm

Adjamskiy Serhii Viktorovych, Ph. D. (Tech.), Chief Designer, Senior Researcher, LLC “Additive laser technology of Ukraine”, Serhiy Podolynskyi Str., 31 b, Dnipro, Ukraine.
Institute of Transport Systems and Technologies of the National Academy of Sciences of Ukraine, Pysarzhevskoho St., 5, Dnipro, 49000, Ukraine. ORCID: 0000-0002-6095-8646. E-mail: as@alt-print.com

Podolsky Rostyslav Viacheslavovych, Ph. D. (Tech.), Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
LLC “Additive laser technology of Ukraine”, Serhiy Podolynskyi Str., 31 b, Dnipro, Ukraine.
ORCID: 0000-0002-0288-0641. E-mail: rostislavpodolskij@gmail.com

Safronova Olena Anatoliivna, Junior Researcher, Ph. D. Student, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-4032-4275. E-mail: safronovaaa77@gmail.com

Shpak Olena Adolfivna, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.

Deryagin A. I., Design Engineer, LLC “Additive laser technology of Ukraine”, Serhiy Podolynskyi Str., 31 b, Dnipro, Ukraine.

INTERNAL RESIDUAL STRESSES IN ADDITIVE MANUFACTURING. (OVERVIEW)

Abstract. Additive manufacturing (AM) is a modern set of technologies that make it possible to quickly and qualitatively create products with a unique geometry that are impossible or difficult to manufacture by traditional methods of production. Currently, researchers pay attention to two major areas, namely AM quality systems and the search for new regularities in already well-known materials that were produced in a traditional way. Internal residual stresses in polycrystalline materials are classified according to three main classes, namely: stress of type I (macrostress), type II (microstress) and type III (intracrystalline residual stress). Accumulation of internal residual stresses generated during the manufacturing process as a result of local heating and cooling (cooling rates from 103 to 108 K/s) can cause damage and possible failure of parts during service. Thus, the reduction of residual internal stresses is considered one of the most urgent and important problems in the field of AM. As a result of the analysis of the works, it was established that during the process of manufacturing parts with the help of SLP, it is actually characteristic that tensile internal stresses develop on the surfaces, which are balanced by compressive internal stresses in the volume. Since the research was carried out on samples of a simple shape, the obtained results are difficult to compare with the details of products of a complex geometric shape, which have significant changes in the geometric dimensions of the cross-section.

Key words: Alfa-150, 316L, microstructure, mechanical tests, SLM technology.

DOI: https://doi.org/10.52150/2522-9117-2023-37-434-446

For citation: Kononenko, G. A., Adjamskiy, S. V., Podolskyi, R. V., Safronova, Е. А., Shpak, E. A., & Deryagin, A. I. (2023). Internal residual stresses in additive manufacturing. (Overview). Fundamental and applied problems of ferrous metallurgy, 37, 434-446. https://doi.org/10.52150/2522-9117-2023-37-434-446

Reference

  1. Adjamskiy, S., Kononenko, G., Podolskyi, R., & Badyuk, S. (2022). Implementation Of Selective Laser Melting Technology In Ukraine. Naukova Dumka. https://doi.org/10.15407/978-966-00-1856-3
  2. Fu, D., Li, X., Zhang, M., Wang, M., Zhang, Z., & Qu, S. (2020). Influence of Effective Laser Energy on the Structure and Mechanical Properties of Laser Melting Deposited Ti6Al4V Alloy. Materials (Basel), 13(4), 962. https://doi.org/10.3390/ma13040962
  3. Gong, H., Hengfeng, Gu., Zeng K., Dilip, J. J. S., Pal, D., & Stucker, B. (2014). Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. Solid Freeform Fabrication Symposium, Austin Texas, 256-267. https://doi.org/10.26153/tsw/15682
  4. Dilip, J. J. S., Anam, M. A., Pal, D., & Stucker, B. (2016). A short study on the fabrication of single track deposits in SLM and characterization. Solid Freeform Fabrication 2016: Proceedings of the 26th Annual International. Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 1644-1659
  5. Adzhamskyi, S. V., Kononenko, H. A., & Podolskyi, R. V. (2023). Justification of technological modes for the formation of a stable single track with a layer thickness of 30 μm from the INCONEL 718 alloy. System technologies, 2(145), 43-52. https://doi.org/10.34185/1562-9945-2-145-2023-05
  6. Adjamskiy, S., Kononenko, G., Podolskyi, R., & Baduk, S. (2022). Studying the Influence of Orientation and Layer Thickness on the Physico-Mechanical Properties of Co-Cr-Mo Alloy Manufactured by the SLM Method. Science and Innovation, 18(5), 85–94. https://doi.org/10.15407/scine18.05.085
  7. Adzhamskyy, S. V., Kononenko, H. A., & Podolskyi, R. V. (2021). Analysis of Structure after Heat Treatment of Inconel 718 Heat-Resistant Alloys Made by SLM-Technology. Metallofiz. Noveishie Tekhnol, 7(43), 909–924. https://doi.org/10.15407/mfint.43.07.0909
  8. Kruth, J.-P., Leu, M.-C., & Nakagawa, T. (1998). Progress in additive manufacturing and rapid prototyping. CIRP Ann.-Manuf. Technol, 47(2), 525–540.
  9. Donachie, M. J., & Donachie, S. J. (2002). Superalloys: a technical guide, second edition [Elektronisk resurs]. ASM International. Р. 409
  10. Deng, D. (2018). Additively Manufactured Inconel 718: Microstructures and Mechanical Properties. Linköping University Electronic Press, 69
  11. Chen, W., Voisin, T., Zhang, Y., Forien, J.-B., Spadaccini, C. M., McDowell, D. L., Zhu, T., & Wang, Y. M. (2019). Microscale residual stresses in additively manufactured stainless steel. Nat Commun, 10, 4338. https://doi.org/10.1038/s41467-019-12265-8
  12. Herzog, D., Seyda, V., Wycisk, E., & Emmelmann, C. (2016). Additive manufacturing of metals. Acta Mater, 117, 371-392
  13. Repper, J., Link, P., Hofmann, M., Krempaszky, C., Petry, W., & Werner, E. (2010). Interphase microstress measurements in IN 718 by cold neutron diffraction. Appl. Phys. A, 99, 65-569. https://doi.org/10.1007/s00339-010-5607-2
  14. Clausen, B., Lorentzen, T., & Leffers, T. (1998). Self-consistent modelling of the plastic deformation of FCC polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater, 46, 3087-3098
  15. Mo, F. J., Sun, G. G., Li, J., Zhang, C. S., Wang, H., Chen, Y., Liu, Z., Yang, Z. K., Li, H. J., & Yang, Z. L. (2018). Recent Progress of Residual Stress Distribution and Structural Evolution in Materials and Components by Neutron Diffraction Measurement at RSND. Quantum Beam Sci., 2, 15
  16. Mercelis, P., & Kruth, J. P. (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J., 12, 254-265
  17. Patterson, A. E., Messimer, S. L., & Farrington, P. A. (2017). Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need. Technologies, 5, 15
  18. Schmidt, M., Merklein, M., Bourell, D., Dimitrov, D., Hausotte, T., Wegener, K., Overmeyer, L., Vollertsen, F., & Levy, G. N. (2017). Laser based additive manufacturing in industry and academia. CIRP Ann.-Manuf. Technol, 66, 561-583
  19. Zheng, B., Zhou, Y., Smugeresky, J.E., Schoenung, J. M., & Lavernia, E. J. (2008). Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: Part II. Experimental investigation and discussion. Metall. Mater. Trans. A Phys. Metall. Mater. Sci, 39(9), 2237-2245
  20. Adzhamskyi, S. V., Kononenko, H. A., & Podolskyi, R. V. (2021). The influence of SLM process parameters on the formation of the boundary region of parts made of heat-resistant nickel alloy Inconel 718. Space science and technology, 27, 6(133), 105-114. https://doi.org/10.15407/knit2021.06.105
  21. Adzhamskyi, S. V., & Kononenko, A. A. (2019). Zakonomernosty vlyianyia parametrov protsessa vyborochnoho lazernoho plavlenyia (SLM) na formyrovanye edynychnoho sloia yz zharoprochnoho nykelyevoho splava Inconel 718 [Patterns of influence of the parameters of the selective laser melting (SLM) process on the formation of a single layer from the heat-resistant nickel alloy Inconel 718]. Beam technologies in welding and material processing, 9, 5-11
  22. Adzhamskyi, S. V., Kononenko, H. A., & Podolskyi, R. V. (2020). Yssledovanye vlyianyia rezhymov SLM-protsessa na kachestvo v oblasty kontura yzdelyi [Investigation of the influence of SLM process modes on quality in the area of product contours]. Materials of the international scientific and technical conference “University Science – 2020”, 157-158
  23. Kononenko, H. A., Adzhamskyi, S. V., Podolskyi, R. V., Safronova, O. A., & Shpak, О. A. (2022). Comparative studies of the mechanical properties of 316L steel samples produced on the ALFA-150 machine in accordance with world analogues. Fundamental and applied problems of ferrous metallurgy, 36, 370-378. https://doi.org/10.52150/2522-9117-2022-36-370-378
  24. Bartlett, J. L., & Li, X. (2019). An overview of residual stresses in metal powder bed fusion. Addit. Manuf, 27, 131–149
Фундаментальные и прикладные проблемы черной металлургии
Logo