DOI: 10.52150/2522-9117-2023-37-158-174
Chaika Oleksii Leonidovych, Ph. D. (Tech.), Senior Researcher, Head of Laboratory, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-1678-2580. E-mail: chaykadp@gmail.com
Chaika Oleksii Leonidovych, Ph. D. (Tech.), Senior Researcher, Head of Laboratory, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-1678-2580. E-mail: chaykadp@gmail.com
Kornilov Bohdan Volodymyrovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-5544-3023. E-mail: balesan2209@gmail.com
Moskalyna Andrii Oleksandrovych, Ph. D. (Tech.), Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0001-9552-2853. E-mail: moskalina.aa@gmail.com
Lebid Vitalii Vasylovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine.
Izumskyi Mykola Mykytovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0002-5164-4450
Dzhyhota Maryna Heorhiivna, Leading Engineer, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, 49107, Ukraine. ORCID: 0000-0003-3062-5127
ANALYSIS OF REDUCTION OF CARBON DIOXIDE EMISSIONS FROM BLAST FURNACE UNDER CONDITIONS OF USING ADVANCED AND EXISTING BLAST FURNACE MELTING TECHNOLOGIES
Abstract. The article discusses the results of heat and power and exergy calculations of the possibilities of new and existing technologies to reduce carbon dioxide emissions and coke consumption, increase pig iron production by injecting hydrogen and hydrogen-containing fuel additives (coke and natural gas) into the furnace, using metal additives, increasing the blast temperature, heat losses, and improving gas distribution in the blast furnace. The calculations were performed using a mathematical model of the complete energy balance of blast furnace smelting developed at the Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, and the impact of the potential of new and existing technologies on reducing CO2 emissions and technical and economic indicators of blast furnace smelting was assessed when the consumption of pulverized coal, hydrogen and hydrogen-containing fuel additives and their combinations in a wide range was changed. The limit values for the injection of hydrogen and hydrogen-containing fuel additives into the blast furnace horn have been determined, which are determined by the following factors: the degree of direct reduction of iron, theoretical combustion temperature, the presence of industrial oxygen, and the temperature of the furnace gas. The study results showed that CO2 emissions in blast furnace production can be reduced by 25-30% by making changes to blast furnace technology and depend on investments, the raw material and energy base of the steelmaker, and the level of existing blast furnace technology. The paper considers the impact of low-cost measures to increase the blast temperature, use of clean metal additives, reduce heat losses, and improve gas distribution in the blast furnace on the reduction of carbon dioxide emissions and technical and economic indicators of blast furnace smelting. The results can be useful for determining the economic feasibility of a particular measure to reduce CO2 emissions in blast furnace production.
Key words: Blast Furnace, decarbonization, natural gas, coke oven gas, coke consumption.
DOI: https://doi.org/10.52150/2522-9117-2023-37-158-174
For citation: Chaika, O. L., Kornilov, B .V., Moskalyna, A. O., Lebid, V. V., Iziumskyi, M. M., & Dzhyhota, M. H. (2023). Analysis of reduction of carbon dioxide emissions from blast furnace under conditions of using advanced and existing blast furnace melting technologies. Fundamental and applied problems of ferrous metallurgy, 37, 158-174. https://doi.org/10.52150/2522-9117-2023-37-158-174
References
- Chaika, O. L., Kornilov, B. V., Merkulov, O. Ie., Moskalyna, A. O., Lebid, V. V., & Iziumskyi, M. M. (2022). Analiz tendentsii rozvytku uiavlen ta tekhnolohii, spriamovanykh na zmenshennia emisii dioksydu vuhletsiu v domennomu vyrobnytstvi [Analysis of trends in the development of ideas and technologies aimed at reducing carbon dioxide emissions in blast furnace production]. Metal and casting of Ukraine, 2 (329), 8–19 [in Ukrainian]. https://doi.org/10.15407/steelcast2019.10.064
- The Paris Agreement within the framework of the UN Framework Convention. Paris. (2015). URL: https://unfccc.int/sites/default/files/russian_paris_agreement.pdf (Last accessed: 26.10.2023) [in Russian]
- 25th session of the United Nations Climate Change Conference. Madrid. (2019). URL: https://unfccc.int/event/cop-25 (Last accessed: 26.10.2023).
- 26th session of the United Nations Climate Change Conference. Glasgow. (2021). URL: https://unfccc.int/ru/peregovornyy-process-i-vstrechi/parizhskoe-soglashenie/klimaticheskiy-pakt-glazgo/itogi-ks-26-voprosy-otchyotnosti#eq-9 (Last accessed: 26.10.2023)
- Buergler, T., & Kofler, I. (2017). Direct Reduction Technology as a Flexible Tool to Reduce CO2 Intensity of Iron and Steelmaking. Berg Huettenmaenn Monatsh, 162, 14–19. https://doi.org/10.1007/s00501-016-0567-2
- Kurunov, I. F. (2017). Sovremennoe sostoianie i ozhidaemye mirovye tendentsii razvitiia metallurgii zheleza [Current state and expected global trends in iron metallurgy development]. Biulleten nauchno-tekhnicheskoi i ekonomicheskoi informatsii “Chernaia metallurgiia”, 2, 3–11 [in Russian]
- A. s. № 73905 Ukraine. Metodyka rascheta. Polnyi enerhetycheskyi balans domennoi plavky. Borodulyn, A. V., Chaika, A. L., Sokhatskyi, A. A., & Moskalyna, A. A. Zaiavl. № 73841 15.05.17; opubl. 27.10.17, Bjul. No. 46
- Jan Szargyt, David R. Morris, & Frank R. Steward (1988). Exergy analysis of Thermal, chemical and metallyrgical processes. New York, Toronto. P. 517
- Stepanov,V. S., & Stepanova, T. B. (1990). O metodakh rascheta kumuliativnykh zatrat energii i eksergii na primere proizvodstva stali [On methods for calculating cumulative energy and exergy costs (on the example of steel production)]. Industrial heat engineering, 6, 65–71 [in Russian]
- Stepanov, V. S. (1992). Analisis of energy effecienty of industrial processes. Heidelberg. Springer-Veclag. P. 220
- Stepanov, V. S., & Stepanova, T. B. (1994). Efficiency of use energy. Novosibirsk. P. 256 [in Russian]
- Stepanov, V. S. (1984). Analysis of the energy perfection of technological processes. Novosibirsk. P. 274 [in Russian]
- Aizatulov, R. S., Borodulin, A. V., & Kovtun, A. F. (1989). Energeticheskaia i eksergeticheskaia kharakteristika chuguna [Energy and exergy characterization of cast iron]. OJSC “Chermetinformatsia” (deposited research paper 30.11.1989, №5311), P. 19 [in Russian]
- Izhevskij, V. P. (1912). Sistema ucheta domennogo balansa [Accounting system of Blast furnace balance]. Journal of the Russian Metallurgical Society. part 1, № 2, 180–214 [in Russian]
- Borodulin, A. V., Gorbunov, A. D., Romanenko, V. I., & Sushhev, S. P. (2006). Blast furnace in the energy dimension. Dneprodzerzhinsk. P. 542 [in Russian]
- Gotlib, A. D. (1958). Blast furnace process. Moscow. P. 510 [in Russian]
- Ramm, A. N. (1980). Modern blast furnace process. Moscow. P. 304 [in Russian]
- Pavlov, M. A. (1994). Issledovanie plavilnogo protsessa domennykh pechei Klimkovskogo zavoda [Investigation of the melting process of blast furnaces of the Klimkovsky plant]. Mining Journal, 3, 265. [in Russian]
- Krasavcev, N. I. (1960). Development of ideas about the influence of direct and indirect reduction on the specific consumption of coke in blast furnaces. – in book: “Scientific research to help of blast furnace production”. Dnepropetrovsk, 9–57 [in Russian]
- Ramm, A. N. (1965). O neobosnovannoi kritike printsipa Griunera [On the unjustified criticism of the Gruner principle]. Steel, 8, 686–689 [in Russian]
- Lozovoj, V. P., & Sharkevich, L. D. (1995). Priamoe vosstanovlenie zheleza v sovremennom domennom protsesse [Direct reduction of iron in the modern blast furnace process]. Steel, 3, 8–10 [in Russian]
- Chaika, A. L., Lebed, V. V., Kornilov, B. V., Moskalina, A. A., & Karikov, S. A. (2021). Heat and Power Analysis of Technologies for Reducing Carbon Dioxide Emissions and Increasing the Energy Efficiency of Blast-Furnace Production. Steel in Translation, 51 (1), 68–72. https://doi.org/10.3103/S0967091221010034
- Chaika, O., Kornilov, B., Alter, M., Lebid, V., Izumskyi, M., Moskalyna, A., & Naboka V. (2023) Analysis of new and existing technologies for reducing carbon dioxide emissions based on the energy balance of blast furnace. METEC & 6th ESTAD. Düsseldorf, Germany. 12-16 June 2023. URL: https://metec-estad2023.com/program/lecture-program.html
- Chaika, O. L, Kornilov, B. V., Moskalyna, A. O., Merkulov, O.Ie., Lebid, V.V., & Iziumskyi, M.M. (2022). Doslidzhennia vplyvu tekhnolohii vykorystannia PVP, pryrodnoho ta koksovoho hazu na dekarbonizatsiiu domennoho vyrobnytstva [Research of the influence of technologies using PCI, natural and coke over gas on the decarbonization of the blast furnace production]. Fundamental and applied problems of ferrous metallurgy, 36, 49-66. [In Ukrainian]. https://doi.org/10.52150/2522-9117-2022-36-49-66
