Bobyr’ Serhii Volodymyrovych, Dr. Sci. (Engin.), Senior Researcher Scientist, Lead researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-6816-1554. Е-mail: svbobyr07@gmail.com

Parusov Eduard Volodymyrovych, Dr. Sci. (Engin.), Senior Researcher, Head of Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-4560-2043

Levchenko Gennadii Vasylovych, Dr. Sci. (Engin.), Professor, Head of laboratory, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0003-1173-5320

Golubenko Tetiana Mykolaivna, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-3583-211X

Chuiko Ihor Mykolaiovych, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-4753-614X

REGULARITIES OF THE RETAINED AUSTENITE FORMATION IN THE COMPLEXLY ALLOYED STEEL (OVERVIEW)

Summary. The purpose of the analysis is to determine the modes of heat treatment that affect the quality parameters of complex alloy steels. Steels, which contain chromium and significant amounts of other alloying elements (nickel, vanadium, molybdenum, etc.) are used for the production of the different metal products, which are working in hard operating conditions: rolling rolls, power equipment parts, piercing plug, etc. Retained austenite is always present in such steels and affects the properties of the final metal products. Should be include the following factors that increase the amount of retained austenite in complexly alloy steels: thermal stabilization of the austenite; redistribution of the carbon between the α-phase and austenite during cooling in the temperature range of the intermediate or bainitic transformation or during isothermal holding slightly above the Мp point; hardening from the intercritical temperature range; changing the cooling rate; the actual content of carbon and alloying elements; changing in the austenitization temperature, isothermal holding and heating temperature during hardening. The indicated factors should be considered during determining the final parameters of the heat treatment mode to control the amount of retained austenite in complexly alloy steels. Isothermal hardening from the γ-α-area is proposed to obtain a multiphase structure of 38HN3MFA steel. Using of the cryogenic treatment for the strengthening mode of the 38HN3MFA steel promotes the transformation of retained austenite into martensite and significantly increases the microhardness of the structural components of the steel.

Keywords: complexly alloyed steel, structure, retained austenite, hardness, isothermal hardening, cryogenic treatment.

For citation: Bobyr’ S.V., Parusov E.V., Levchenko G.V., Golubenko T.M., Chuiko I.M. Zakonomirnosti formuvannya zalyshkovoho austenitu v skladnolehovanykh stalyakh (ohlyad) [Regularities of the retained austenite formation in the complexly alloyed steel (overview)]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 223-235. (In Ukrainian).

DOI: 10.52150/2522-9117-2021-35-223-235

Reference

  1. Gulyayev P. (1977). Termicheskaya obrabotka stali [Heat treatment of steel], Moskva: Metallurgiya, 1977. 647 p. [In Russian].
  2. Zhang , Zhang M., Guo Z., Chen N., Rong Yo. (2011). A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Materials Science and Engineering A, 2011, 528, 8486–8491. https://doi.org/10.1016/j.msea.2011.07.049
  3. Schastlivtsev M., Kaletina YU.V., Fokina Ye.A., Kaletin A.YU. (2014). Vliyaniye skorosti okhlazhdeniya na kolichestvo ostatochnogo austenita pri beynitnom prevrashchenii [Effect of cooling rate on the amount of retained austenite upon bainitic transformation]. Fizika metallov i metallovedeniye [The Physics of Metals and Metallography], 2014, Vol. 115, 10, 1052-1063. https://doi.org/10.7868/S0015323014100143 [In Russian].
  4. Sadovskiy D., Fokina Ye.A. (1986). Ostatochnyy austenit v zakalennoy stali [Retained austenite in hardened steel]. Moskva: Nauka, 1986, 113 p. [In Russian].
  5. Mirzayeva A., Sozykina S.A., Makovetskiy A.N., Krasnotalova A.O., Yusupova L.I. (2019). Dilatometricheskoye issledovaniye obrazovaniya martensita i effektov stabilizatsii austenita v vysokokhromistoy trubnoy stali [Dilatometric study of the formation of martensite and of the effects of stabilization of austenite in high-chromium pipe steel]. Fizika metallov i metallovedeniye [The Physics of Metals and Metallography], 2019, Vol. 120, 8, 840–844. https://doi.org/10.1134/S0031918X19060085 [In Russian].
  6. Tsukanov V., Ziza A.I. (2015). Sovershenstvovaniye rezhimov termoobrabotki stali marok 35KHN3MFA i 38KHN3MFA s tsel’yu povysheniya soprotivlyayemosti khrupkomu razrusheniyu. Issledovaniye prevrashcheniya ostatochnogo austenita [Improving of heat treatment modes for 35KhN3MFA and 38KhN3MFA steel grades to increase resistance to brittle fracture. Examination of the residual austenite transformation]. Voprosy materialovedeniya [Materials science issues], 2015, Vol. 2, 82, 9–16. [In Russian].
  7. Kurdyumov V., Utevskiy L.M., Entin R.I. (1977). Prevrashcheniya v zheleze i stali [Transformations in iron and steel]. Moskva: Metallurgiya, 1977, 238 p. [In Russian].
  8. Speer G., Matlock D.K., Cooman B.C., Schroth J.G. (2003). Carbon portioning into austenite after martensite transformation. Acta Materiala, 2003, 51, 2611–2622. https://doi.org/10.1016/S1359-6454(03)00059-4
  9. Edmonds V., He K., Rizzo F.C., Cooman B.C., Matlock D.K., Speer J.G. (2006). Quenching and partitioning martensite–A novel steel heat treatment. Materials Science and Engineering: A, 2006, 438, 25–34. https://doi.org/10.1016/ j.msea.2006.02.133
  10. Sun , Yu H. (2013). Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process. Materials Science & Engineering A, 2013, 586, 100–107. https://doi.org/10.1016/j.msea.2013.08.021
  11. Jirkova , Masek B., Wagner M.F.-X., Langmajerova D., Kucerova L., Treml R., Kiener D. (2014). Influence of metastable retained austenite on macro and micromechanical properties of steel processed by the Q&P process. Journal of Alloys and Compounds, 2014, 615, 163–168. https://doi.org/10.1016/j.jallcom.2013.12.028
  12. Malinov S., Burova D.V. (2013). Vliyaniye zakalki iz mezhkriticheskogo intervala temperatur (MKIT) i posleduyushchego vysokogo otpuska na strukturu i svoystva staley 40KHN i 40KHN2MA [The impact of hardening from inter-critical temper a-ture interval (ITI) and subsequent high tempering on the structure and properties of steels 40HN and 40HN2MA]. Visnik Priazovs’kogo derzhavnogo tekhníchnogo uníversitetu: zb. naukovikh prats [Reporter of the Priazovskyi state technical university], 2013, 26, 93–99. [In Russian].
  13. Bobyr’ V, Levchenko G.V., Nefed’yeva Ye.Ye., Khulin A.A. (2014). Vliyaniye izotermicheskoy zakalki na strukturnoye sostoyaniye i svoystva armaturnogo prokata iz stali 30GS [Influence on bainitic hardening properties and structural states of reinforcing rolled steel 30GS]. Fundamental’nyye i prikladnyye problemy chernoy metallurgii [Fundamental and applied problems of ferrous metallurgy], 2014, 29, 240–245. [In Russian].
  14. Schastlivtsev M., Kaletina YU.V., Fokina Ye.A., Kaletin A.YU. (2014). O roli ostatochnogo austenita v strukture legirovannykh staley i vliyanii na nego vneshnikh vozdeystviy [On the role of retained austenite in the structure of alloyed steels and the effect of external factors], Fizika metallov i metallovedeniye [The Physics of Metals and Metallography], 2014, Vol. 115, 9, 962–976. https://doi.org/10.1134/S0031918X14090105 [In Russian].
  15. Maysuradze V., Kuklina A.A., Lebedev D.I., Leont’yeva A.A. (2020). Stabilizatsiya ostatochnogo austenita pri beynitnom prevrashchenii v stali 25G2S2N2MA [Stabilization of the Retained Austenite during the Bainite Transformation in HY-TUF Steel]. Ural’skaya shkola molodykh metallovedov: sbornik materialov XX Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Proceedings of of the XX International scientific and technical conference Ural school of young metal scientists], (g. Yekaterinburg, 3–7 fevralya 2020 g.), Yekaterinburg: Izd-vo Ural. un-ta, 2020. p.p. 223–226. [In Russian].
  16. Kaletin YU., Kaletina YU.V. (2015). Rol’ ostatochnogo austenita v strukture beskarbidnogo beynita konstruktsionnykh staley [The role of retained austenite in the structure of carbide-free bainite of construction steels]. Fizika metallov i metallovedeniye [The Physics of Metals and Metallography], 2018, Vol. 119, 9, 946–952. [In Russian].
  17. Kaletina YU., Kaletina YU.V. (2015). Evolyutsiya struktury i svoystv kremnistykh staley pri fazovom perekhode austenit-beynit [Evolution of the structure and properties of silicon steels in the austenite-bainite phase transition]. Fizika tverdogo tela [Physics of the Solid State], 2015, Vol. 57, 1, 56–61. https://doi.org/10.1134/S106378341501014X [In Russian].
  18. Bobyr S.V., Krot P. V., Levchenko G.V., Baranovska O.E., Loschkarev D.V. (2021). Influence of modes of thermal hardening and the subsequent cryogenic processing on structure and properties of steel 38Ni3CrMoV. obrobka met, 2021, 98, 2, 14–22. https://doi.org/10.15407/mom2021.02.014