Babachenko Oleksandr Ivanovych, Dr. Sci. (Engin.), Senior Research Scientist, Director, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-4710-0343. E-mail: office.isi@nas.gov.ua

Kononenko Ganna Andriivna, Dr. Sci. (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0001-7446-4105

Merkulov Oleksii Yevhenovych, Dr. Sci. (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-7867-0659

Podolskyi Rostyslav Viacheslavovych, PhD (Engin.), Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107.  ORCID 0000-0002-0288-0641

Klemeshov Evhen Serhiiovych, PhD (Engin.), Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107.  ORCID 0000-0001-7446-410X

Safronova Olena Anatoliivna, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-4032-4275

MODELING OF PHASE-STRUCTURAL TRANSFORMATIONS IN STEEL FOR NEW GENERATION RAILWAY TRACKS

Summary. The process of operation of vehicles is determined by the interaction of the wheel and rail. The result is the effect arising from the friction of rolling and especially from the friction of the wheel sliding on the rail during braking, in relation to these changes there is a significant increase in the intensity of wear of the wheels of rolling stock. Based on research in recent years, it is known that the strength of pearlitic rail steels has reached its limit. Based on the literature analysis, steels used in world practice for the production of railway rails from bainite were identified and compared with the chemical compositions of steels used in various fields in Ukraine. In order to determine the influence of basic chemical elements through known isothermal (TTT) diagrams and the actual chemical composition on the formation of the structure with the subsequent construction of thermokinetic (ССТ) diagrams. A promising approach is to increase resistance through the manufacture of railway rails with bainitic structure. The regularities of the decay kinetics of austenite grade 30HGS with 0.28% C, 1.49% Si, 0.92% Mn, 0.99% Cr were studied by the method of mathematical modeling. The intervals of cooling rates, within which the change of the mechanism of structure formation at austenite decay is observed, are determined. It is shown that at the cooling rate up to ~ 3°С/s the decay of austenite occurs with the formation of pre-eutectoid ferrite and perlite; at 3°C/s… 10°C/s the steel structure consists of pre-eutectoid ferrite, perlite and bainite; at 10°C/s … 20°C/s – from pre-eutectoid ferrite, perlite, bainite and martensite; at 20°C/s … 30°C/s – from bainite and martensite; at a cooling rate of 50°C/s the decay of austenite occurs with the formation of martensite. The critical cooling rate for the investigated steel is in the range of 30… 50ºС/s. The chemical composition of experimental steels for railway rails was developed and ingots smelting up to 10 kg were smelted in the laboratory.

Key words: railway rail, rail steel, bainite, modeling, 30HGS.

For citation: Babachenko O.I., Kononenko G.A., Merkulov O.Ye., Podolsky R.V., Klemeshov E.S., Safronova O.A. Modelyuvannya fazovo-strukturnykh peretvoren u stali dlya zaliznychnykh reyok novoho pokolinnya [Modeling of phase-structural transformations in steel for new generation railway tracks]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 212-222. (In Ukrainian).

DOI: 10.52150/2522-9117-2021-35-212-222

References

  1. Shur A. (2003). K voprosu ob optimal’nom sootnoshenii tverdosti rel’sov i koles [On the question of the optimal ratio of the hardness of rails and wheels]. Sovremennye problemy vzaimodejstvija podvizhnogo sostava i puti: Materialy nauchno-prakticheskoj konferencii [Proceedings of scientific-practical conference Modern problems of interaction between rolling stock and tracks]. VNIIZhT. Moskva 2003. p.p. 87-93 [In Russian].
  2. Harder (1999). Creep Force – Creepage and Frictional Work Behaviour in Non-Hertzian Counter formal Rail/Wheel Contacts. Proceedings of IHHA’99 STS-Conference on Wheel/Rail Interface. Moscow. 1999. Vol. 1. p.p. 207-214.
  3. Vorob’ev A. (2009). Issledovanie naprjazhennogo sostojanija pjatna kontakta kolesa i rel’sa [Investigation of the stress state of the wheel-rail contact spot]. Vestnik IrGTU [ISTU Bulletin], 2009, 42–47.
  4. Paul , Hashemi J. (1977). User’s Manual for Program CONTACT. Technical Report No. 4. FRA/ORD-78/27/PB286097. NTIS. Springfield. VA. Sept. 1977.
  5. Bol’shakov I., Dolzhenkov I.E., Zajcev A.V. Oborudovanie termicheskih cehov. tehnologii termicheskoj i kombinirovannoj obrabotki metalloprodukcii [Equipment for thermal shops. technologies of thermal and combined processing of metal products]. 2nd ed. Dnepropetrovsk. RIA Dnepr-VAL. 2010. 619 p. [In Russian].
  6. Medovar B., Cykulenko K.A., Cykulenko A.K. (1998). Bejnitnye stali dlja rel’sov [Bainitic steel for rails]. Problemy special’noj jelektrometallurgii [Problems of special electrometallurgy], 1998, 10-20. [In Russian].
  7. Devis (1998). Sawley. Railway Track Structures, 1998, 11, 14-17
  8. Rel’sovaja stal’ dlja zheleznyh dorog Severnoj Ameriki (1999). [Rail steel for North American railways]. ZhDM, 1999, 11. [In Russian].
  9. Babachenko І., Kononenko G.A., Roslik O.V., Majstrenko K.M., Podol’s’kij R.V. (2021). Rozrobka stalej dlja metaloprodukcії zalіznichnogo priznachennja [Development of steels for railway metal products]. Dnіpro. “Domіnanta-print”. 2021. 298. [In Ukrainian].
  10. Babachenko О.І., Kononenko Г., Podolskyi R.V. (2021). Development of a model for calculating changes in K76F rail steel temperature to determine the heat treatment parameters. Science and Innovation, 2021, 17 (4), 25-32. https://doi.org/10.15407/scine17.04.025
  11. Podol’s’kij V., Dejneko L.M. (2020). Viznachennja podal’shih naprjamіv pіdvishhennja ekspluatacіjnoї nadіjnostі zalіznichnih rejok novogo pokolіnnja [Determination of further ways to improve the operational reliability of the new generation of railway tracks]. Vseukraїns’ka naukovo-tehnіchna konferencіja “Molodaja akademija 2020” [All-Ukrainian scientific and technical conference “Young Academy 2020”], 2020, 1, p. 59. [In Ukrainian].
  12. Podol’s’kij V., Safronova O.A., Babachenko O.І., Kononenko A.A. (2020). Doslіdzhennja vplivu termіchnoї obrobki na formuvannja mіkrostrukturi ta tverdostі doslіdnih rejkovih stalej [Research of influence of heat treatment on formation of microstructure and hardness of experimental rail steels]. 11 Vseukraїns’ka konferencіja molodih vchenih “Molodі vchenі-2020” [11 All-Ukrainian Conference “Young Scientists 2020”], 2020, 1, p.p. 53-56. [In Ukrainian].
  13. Babachenko І., Kononenko G.A., Podol’s’kij R.V. (2020). Іmіtacіjne modeljuvannja zmіni teplovogo polja zalіznichnoї rejki pіd chas diferencіjnoї termіchnoї obrobki [Simulation modeling of changes in the thermal field of the railway rail during differential heat treatment]. VI Mіzhnarodna naukovo tehnіchna konferencіja komp’juterne modeljuvannja ta optimіzacіja skladnih sistem [VI International Scientific and Technical Conference “Computer Modeling and Optimization of Complex Systems”], 2020, 6, p.p. 17-18. [In Ukrainian].
  14. Babachenko І., Kononenko G.A., Podol’skij R.V., Safronova O.A. (2020). Doslіdzhennja vplivu rezhimіv termіchnoї obrobki doslіdnih stalej dlja zalіznichnih rejok novogo pokolіnnja na mehanіchnі vlastivostі [Research of influence of modes of heat treatment of experimental steels for railway rails of new generation on mechanical properties]. Fundamental’nі і prikladnі problemi chornoї metalurgії [Fundamental and applied problems of ferrous metallurgy], 2020, 34, 247-255 [In Ukrainian]. https://doi.org/10.52150/2522-9117-2020-34-247-255
  15. Babachenko О.І., Коnonenko А., Podolskyi R.V. et al. (2021). Steel for Railroad Rails with Improved Operating Properties. Materials Science, 2021, 56, 814–819 https://doi.org/10.1007/s11003-021-00499-1
  16. Sharma , Sangal S., Mondal K. (2016). Wear behaviour of bainitic rail and wheel steels. Materials Science and Technology, 2016, 32 (4), 266–274. https://doi.org/10.1080/02670836.2015.1112537
  17. Pointner (2008). High strength rail steels – The importance of material properties in contact mechanics problems. Wear, 2008, 265, 1373-1379. https://doi.org/10.1016/j.wear.2008.03.015
  18. Popova E., Popov A.A. (1991). Diagrammy prevrashhenija austenita v staljah i beta-rastvorah v splavah titana: Spravochnik termista [Diagrams of austenite transformation in steels and beta-solutions in titanium alloys: Thermist’s Handbook]. (3th ed.). Moskva: Metalurgija. 1991. 503 p. [In Russian].
  19. Popov A., Popova L.E. (1961). Izotermicheskie i termokineticheskie diagrammy raspada pereohlazhdennogo autenita: Spravochnik termista [Isothermal and thermokinetic diagrams of the decay of supercooled authenite. Thermist’s handbook]. Moskva-Sverdlovsk: Gosudarstvenno nauchno-tehnicheskoe izdatel’stvo mashinostroitel’noj literatury. 1961. 430 p. [In Russian].
  20. Delbart , Constant A. (1956). Courbes de transformation des aciers de fabrication francaise. Saint-Germain en Laye. 1956. 140p.
  21. Vinarov M. (1945). Aviacionnye stali [Aviation steels]. G. N. Dubinin (Ed.). Oborongiz. 1945. [In Russian].