Baiul Kostiantyn Vasylovych, Dr. Sci. (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-1426-7956. Е-mail: baiulkonstantin@gmail.com

Vashchenko Serhii Volodymyrovych, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORСID 0000-0001-8344-961X

Khudyakov Oleksandr Yuriiovych, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORСID 0000-0002-6507-1120

Solodka Nataliia Oleksandrivna, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; Associate professor, Ukrainian State University of Chemical Technology. ORСID 0000-0002-7545-4969

Prokudina Elvira Borysivna, Eng. 2 cat., Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107

BASIC APPROACHES TO SYSTEM DESIGN OF ROLLER PRESSES ON THE MODULAR PRINCIPLE

Summary. The work aims to form basic approaches to the system design of roller presses on a modular basis. For the design of modern roller presses in many industries, the aggregate-modular principle of equipment creation is actively used. In this regard, the need to further develop methods for roller presses analysis and design is urgent. The issues of development of the scientific base for the synthesis of rational layout and design solutions of roller presses taking into account the requirements for the implementation of the technological process of pressing are becoming especially relevant. The paper shows that despite the large number of works devoted to the study of the briquetting process in roller presses, the process of creating a press design is iterative in nature of trial and error. This is due to the multifactorial process and briquetting technology. The main interrelated factors influencing the briquetting process are highlighted. The main components of the system design of roller presses and the system approach to modeling the rational design of these machines using the methods of structural-parametric synthesis and analysis are formulated. The result of structural and parametric synthesis of the rational design of the roller press is presented in the form of tables, graphs, and text files that contain a sufficient set of information for development in automated design systems package of design documentation for the production of the roller press. An approach to the design of roller presses on a modular basis is formulated. An example of generalized decomposition of a roller press design of an Iron & Steel Institute from basic modules is given. The roller presses of the Iron & Steel Institute design basic elements data array have been created, which can be used when creating new modifications of presses on a modular basis. Parameters, target functions, and algorithms for designing roller presses are formulated.

Key words: roll presses, briquetting, system design, modular principle.

For citation: Baiul K.V., Vashchenko S.V., Khudyakov O.Yu., Solodka N.O. Prokudina E. B. Bazovi pidkhody do systemnoho proektuvannya valkovykh presiv za modul’nym printsypom [Basic approaches to system design of roller presses on the modular principle]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 159-185. (In Ukrainian).

DOI: 10.52150/2522-9117-2021-35-159-185

References

  1. Khudyakov Yu., Vashchenko S.V., Bayul K.V., Semenov Yu.S. (2021). Opytnaya verifikatsiya novykh uravneniy pressovaniya melkofraktsionnykh materialov gorno-metallurgicheskogo kompleksa. Chast’ 2. Stadiynoye uravneniye [Experimental verification of new compaction equations for fine materials of the mining & metallurgical complex. Part 2. Stage compaction equatin]. Novyye ogneupory [New Refractories], 2021, 2, 7-13. [In Russian]. https://doi.org/10.1007/s11148-021-00555-y
  2. Khudyakov Yu., Vashchenko S.V., Bayul K.V., Semenov Yu.S., Gorupakha V.V. (2021). Novyy metod prognozirovaniya uplotnyayemosti shikht iz melkofraktsionnykh materialov gorno-metallurgicheskogo kompleksa [New method for predicting compaction of charges from fine-fraction materials of mining and metallurgical complex]. Metallurg [Metallurgist], 2021, 9, 15-22. [In Russian]. https://doi.org/10.52351/00260827_2021_09_15
  3. Vashchenko S.V., Khudyakov A.Yu., Baiul K.V. et al. (2021). Method for predicting the strength of pellets produced from dry fine-grained materials. Powder Metallurgy & Metal Ceramics, 2021, Vol. 60, 3-4 (538), 148-159. https://doi.org/10.1007/s11106-021-00233-1
  4. Vashchenko S.V., Khudyakov O.Yu., Bayul K.V., Semenov Yu.S. (2021). Metod prognozirovaniya prochnostnykh kharakteristik briketov, poluchennykh iz sukhikh melkofraktsionnykh materialov [Method to predict strength characteristics of briquettes obtained from dry fine-grained materials]. Chernyye metally [Ferrous metals], 2021, 6, 59-64. [In Russian]. https://doi.org/10.17580/chm.2021.06.11
  5. Bayul V. Effect of the geometrical parameters of roll press forming elements on the briquetting process: analytical study. Powder Metallurgy & Metal Ceramics, 2012, Vol. 51, 3-4, 157-164. https://doi.org/10.1007/s11106-012-9411-8
  6. Baiul , Solodka N., Khudyakov A. et al. (2020). Selection of rational surface configuration for roller press tires. Powder Metallurgy & Metal Ceramics, 2020, Vol. 59, 1-2, 9-20. https://doi.org/10.1007/s11106-020-00133-w
  7. Baiul , Vashchenko S., Khudyakov A. et al. (2020). Optimization of wastes compaction parameters in case of gradual wear of briquetting press rolls. Proceedings of the first virtual conference on mechanical fatigue (VCMF2020),2020, 53-54.
  8. Bol’shakov I., Bayul K.V. (2013). Analiz sovremennykh mashin dlya briketirovaniya melkofraktsionnykh syr’yevykh materialov [Analysis of modern machines for briquetting small fraction of raw material]. Metallurgicheskaya i gornorudnaya promyshlennost’ [Metallurgical & Mining Indusry], 2013, 4, 92-96. [In Russian].
  9. Bembenek (2017). Badania i perspektywy nowych obszarуw stosowania pras walcowych. [Research and prospects for new areas of roller press application]. Przemysł Chemiczny [Chemical industry], 2017, 96, 9, 1845-1847. [In Polish]. https://doi.org/10.15199/62.2017.9.3
  10. Hryniewicz , Janewicz A. (2008). Badania i rozwój konstrukcji prasy walcowej [Research and development of roll press construction]. Problemy Eksploatacji [Exploitation problems], 2008, 3, 143-151. [In Polish].
  11. Hryniewicz , Kosturkiewicz B., Janewicz A. (2004). Selected problems of development of construction and exploitation of roll presses. Problemy Eksploatacji [Exploitation problems], 2004, 4, 63-70.
  12. Hryniewicz , Bembenek M., Gara P. (2008). Problem of roll press compacting unit selection to consolidate material in two-stage granulation process. Chemik: nauka – technika – rynek [Chemist: Science – Technology – Market], 2008, 61, 9, 425-428.
  13. Wennerstrum (2000). Ten things you need to consider whenchoosing and installing a roller press system. Powder and bulk engineering, 2000, 37-47.
  14. Dec T., Komarek R.K. (1989). Computer aided design of roll type briquetters and compactors. IBA Proceedings, 21st. Biennial Conference, New Orleans, LA, 1989, Vol. 21, 35-38.
  15. Dec T., Komarek R.K. (1990). Roll press design for powder and bulk solids. 15th Powder and Bulk Solids Conference/Exhibition, Proceedings of the Technical Program, June, 4-7, 1990, O’Hare Exposition Center, Rosemont, IL, 125-136.
  16. Dec T., Zavaliangos A., Cunningham J.C. (2003). Comparison of various modeling methods for analysis of powder compaction in roller press. Powder Technology, 2003, Vol. 130, 1-3, 265–271. http://dx.doi.org/10.1016/S0032-5910(02)00203-6.
  17. Ravich M. (1975). Briketirovaniye v tsvetnoy i chernoy metallurgii [Briquetting in non-ferrous and ferrous metallurgy]. Moskva: Metallurgiya, 1975, 232. [In Russian].
  18. Maymur N., Khudyakov A.Yu., Petrenko V.I., Vashchenko S.V., Bayul K.V. (2016). Briketirovaniye Metallurgicheskogo syr’ya. Aktual’nost’ i puti razvitiya metoda [Briquetting of Metallurgical raw materials. Relevance and development of the method]. Byul. nauchno-tekhnicheskoy i ekonomicheskoy informatsii. Chernaya metallurgiya. [Bul. scientific, technical and economic information. Ferrous metallurgy], 2016, 1, 74-81. [In Russian].
  19. Barnett (2010). Roll-press briquetting: Compacting fines to reduce waste-handling costs. Powder and bulk engineering, 2010, Vol. 24, 10, 1-6.
  20. Srikant Pimple, Akash , Mahesh D., Astik S. (2015). Roller Compaction Design and Critical Parameters in Drug Formulation and Development: Review. International Journal of Pharm Tech Research, 2015, Vol. 7, 1, 90-98.
  21. Khoroshev N. (1999). Vvedeniye v upravleniye proyektirovaniyem mekhanicheskikh sistem: Uchebnoye posobiye [An Introduction to Mechanical Design Management]. Belgorod, 1999, 372, ISBN 5-217-00016-3. [In Russian].
  22. Sharma C., Aggarwal D.K. (2010). Machine Design. S.K. Kataria & Sons, 2010, 1100.
  23. Bhandari B. (2007). Design of Machine Elements. New Delhi: Tata McGraw-Hill, 2007.
  24. Budynas G., Nisbett J.K., Shigley J.E. (2011). Shigley’s Mechanical Engineering Design. (9th ed). New York: McGraw-Hill, 2011, 1120.
  25. Golenko (2010). Fundamentals of machine design: a coursebook for Polish and foreign students. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2010, 175.
  26. Rao S. (2009). Engineering Optimization: Theory and Practice. 4th Edition. John Wiley and Sons, 2009, 813. https://doi.org/10.1002/978470549124
  27. Saaty L., Vargas L.G. (2013). Decision Making with the Analytic Network Process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks. New York: Springer, 2013, 370. https://doi.org/10.1007/978-1-4614-7279-7