Razdobreev Valerii Guriiovych, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-7402-7992. Е-mail: v_razdobreev@ukr.net

Palamar Dmytro Gryhorovych, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-9503-3248

Leshchenko Oleksandr Ivanovych, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000- 0003-1877-8358

Kluychnikov Kyrylo Yuriiovych, Junior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0003-2465-3244

MODERN TRENDS IN THE PRODUCTION OF CORROSION-RESISTANT AND FIRE-RESISTANT PRESTRESSING REINFORCING BARS

Summary. The aim of the work is to study modern methods of production in the world of corrosion-resistant and fire-resistant high-strength reinforced rolled steel, designed for pre-stressed reinforced concrete structures. The specific cost of reinforcement is determined by the ratio of its value to the design resistance and decreases with increasing strength class. In Ukraine, economically alloyed steel grades are used for the production of prestressed high-strength reinforcing steel with a diameter of 6-40 mm of periodic profile according to DSTU 3760: 2019. It is also possible to use thermal strengthening of rolled products from rolling heating in the rolling mill stream, or from special (separate) heating. Hardening, tempering and also cold deformation of smooth profiles with the subsequent drawing of a periodic profile are also applied. According to the Interstate GOST 34028-2016 for the countries of the Customs Union, high-strength reinforcing steel of periodic profile of class A600p is made in bars and skeins with a diameter of 10-40 mm, and classes A800 and A1000 only in bars with a diameter of 10-40 mm from low-alloy steel grades. Depending on the diameter of the reinforcing steel, different production methods are used. GOST 34028-2016 contains clear requirements for corrosion resistance and methods of its testing.

Many foreign requirements for the production of high-strength prestressed reinforcement, depending on the diameter of the profile (6-50 mm) and the method of production use carbon steels with different maximum carbon content from 0.37 to 0.8%, maximum silicon content from 0.55 up to 2.0% and a maximum manganese content of 1.8 to 2.0%. Thermomechanical reinforcement of reinforcing steel from rolling heating in the flow of rolling mills, hardening from separate (special) heating followed by tempering and strengthening by mechanical extraction followed by low-temperature tempering are used.

Corrosion is the main cause of damage and destruction of reinforced concrete structures and buildings of prestressed reinforced steel from carbon steels. This problem in the world today is solved with the use of stainless steels, which have high corrosion resistance and fire resistance. Prestressed stainless steel reinforcement has higher strength and, especially, ductility than carbon steel. Stainless steel grades are used for the production of prestressed reinforcing steel with a diameter of 5 to 75 mm. In the production of periodic profiles of stainless steel reinforcement, there are two main technological routes: hot rolling and cold rolling. A promising way is the use of controlled hot rolling and thermomechanical treatment. As the rolling temperature decreases, the hardness of the austenite phase increases. For two-phase stainless steels, this allows to achieve high strength and ductility. Examples of the use of prestressed high-strength rebar in the world are: the construction of sealed shells that prevent the release of radioactive substances into the environment in severe accidents at nuclear power plants; construction of tanks for nuclear waste; construction of offshore platforms for oil production; construction of sea and river bridges, long-span ceilings, high-rise buildings, roads and other similar facilities.

Keywords: reinforcing bars, corrosion resistance, fire resistance, economically alloyed steel, stainless steel, hot rolling, cold deformation.

For citation: Razdobreev V.G., Palamar D.G., Leshchenko О.I., Kluychnikov K.Yu. Suchasni tendentsiyi vyrobnytstva koroziynostiykoho i vohnestiykoho napruzhenoho armaturnoho prokatu [Modern trends in the production of corrosion-resistant and fire-resistant prestressing reinforcing bars.]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 108-133. (In Ukrainian).

DOI: 10.52150/2522-9117-2020-35-108-133

References

1. Kugushin A.A., Uzlov I.G., Kalmykov V.V., Madatyan S.A., Ivchenko A.V. (1986). Vysokoprochnaya armaturnaya stal‘ [High strength reinforcing steel]. Moskva: Metallurgiya, 1986. 272. [In Russian].

2. Zvezdov A.I., Mikhaylov K.V., Volkov Yu.S. (2000). Predvaritel’no-napryazhennyy zhelezobeton: sostoyaniye i perspektivy razvitiya [Prestressed reinforced concrete: state and development prospects]. Beton i zhelezobeton [Concrete and reinforced concrete], 2000, 5, 2-4. [In Russian].

3. Zvezdov A.I., Mikhaylov K.V., Volkov Yu.S. (2001). XXI vek– vek betona i zhelezobetona [XXI century – the century of concrete and reinforced concrete]. Beton i zhelezobeton [Concrete and reinforced concrete], 2001, 1, 2-6. [In Russian].

4. Asatryan L.V. (2008) Effektivnost’ stroitel’stva s primeneniyem tekhnologii prednapryazheniya zhelezobetona [Efficiency of construction using reinforced concrete prestressing technology]. Stroitel’nyye materialy, oborudovaniye, tekhnologii XXI veka [Building materials, equipment, technologies of the XXI century], 2008, 2, 55-57. [In Russian].

5. Yukhvets I.A. (1973). Proizvodstvo vysokoprochnoy provolochnoy armatury [Production of high-strength wire reinforcement]. Moskva: Metallurgiya, 1973. 264. [In Russian].

6. Madatyan S.A. (2013). Sravnitel’ny analiz primeneniya armatury v zheleznobetonnykh konstruktsiyakh v Rossii i za rubezhom [Comparative analysis of the use of reinforcement in reinforced concrete structures in Russia and abroad]. Vestnik MGSU [MGSU Bulletin], 2013, 11, 7-18. [In Russian].

7. Krasovskaya G.M., Kroshkov B.V. (1973). Predvaritel’no uprochnennaya armatura predvaritel’no napryazhennykh zheleznobetonnykh konstruktsiy, stoykaya protiv korrozionnogo rastreskivaniya [Pre-hardened reinforcement of prestressed reinforced concrete structures, resistant to stress corrosion cracking]. Zashchita stroitel’nykh materialov i konstruktsiy ot korrozii [Protection of building materials and structures from corrosion]: materialy Vsesoyuznogo nauchno-tekhnicheskogo soveshchaniya, Kiyev, noyabr’ 1973. 37-38. [In Russian].

8. Uzlov I.G., Razdobreyev V.G., Sidorenko O.G., Sheremet V.A., Kekukh A.V. (2004). Vysokoeffektivnyy termomekhanicheski uprochnennyy prokat raznykh urovney prochnosti [Highly efficient thermomechanically hardened rolled products of various strength levels]. Stal’ [Steel], 2004, 6, 83-87. [In Russian].

9. Uzlov I.G., Razdobreyev V.G., Sidorenko O.G., Sheremet V.A., Kekukh A.V., Mamayev A.V. (2004). Novyye tekhnologicheskiye resheniya termomekhanicheskogo uprochneniya armaturnogo prokata razlichnykh klassov prochnosti [New technological solutions for thermomechanical hardening of reinforcing bars of various strength classes]. Metallurgicheskaya i gornorudnaya promyshlennost’ [Metallurgical and mining industry], 2004, 5, 61-64. [In Russian].

10. Sheremet V.A., Kekukh A.V., Razdobreyev V.G., Kuvayev V.N., Ivanov D.A. (2004). Vliyaniye rezhimov termomekhanicheskoy obrabotki na strukturu, mekhanicheskiye i sluzhebnyye svoystva termouprochnennoy armatury klassa A1000 [Influence of the modes of thermomechanical treatment on the structure, mechanical and service properties of heat-strengthened reinforcement of class A1000]. VUZov. Chernaya metallurgiya [Izv. Universities. Ferrous metallurgy], 2004, 11, 40-43. [In Russian].

11.  Armaturnyy prokat dlya zhelezobetonnykh konstruktsiy i izdeliy. Spravochnoye posobiye [Reinforcing bars for reinforced concrete structures and products. Reference manual]. (2003). Yu.T. Khudik, A.V. Kekukh (Ed.). Krivoy Rog: SP “Mira”, 2003. 115. [In Russian].

12. Podval’nyy A.M.(2000). Fiziko-khimicheskaya mekhanika – osnova nauchnykh predstavleniy o korrozii betona i zhelezobetona [Physicochemical mechanics is the basis of scientific ideas about the corrosion of concrete and reinforced concrete]. Beton i zhelezobeton [Concrete and reinforced concrete], 2000, 5, 23-27. [In Russian].

13. Yagupov B., Ivanov A. (2010). K voprosu o silovom soprotivlenii zhelezobetona, povrezhdennogo khimkorroziyey [On the issue of strength resistance of reinforced concrete damaged by chemical corrosion]. Beton i zhelezobeton. [Concrete and reinforced concrete], 2010, 4, 22-26. [In Russian].

14. Kalmykov V.V., Uzlov I.G., Grechnaya I.Ya., Razdobreyev V.G. (1999). Vliyaniye osobennostey strukturnogo sostoyaniya konstruktsionnoy stali na yeye korroziyu v kisloy srede [Influence of the peculiarities of the structural state of structural steel on its corrosion in an acidic environment]. Fiziko-khimicheskaya mekhanika materialov [Physical and chemical mechanics of materials], 1999, vol.35, 2, 119-120. [In Russian].

15. Kalmykov V.V., Grechnaya I.Ya., Razdobreyev V.G. (1998). Vliyaniye ugleroda i kremniya na korrozionnoye povedeniye termicheski uprochnennykh armaturnykh staley [The effect of carbon and silicon on the corrosion behavior of heat-hardened reinforcing steels]. Sb. nauchn. trudov Donetskogo Gosudarstvennogo Tekhnicheskogo Universiteta [Sat. scientific. Proceedings of Donetsk State Technical University]. Donetsk: Izd-vo LIK, 1998. 268-273. [In Russian].

16. Kalmykov V.V., Razdobreyev V.G. (1999). Vliyaniye strukturnykh osobennostey konstruktsionnoy stali na yeye korroziyu v 3% – nom rastvore NaCl pri peremennom pogruzhenii [Influence of structural features of structural steel on its corrosion in 3% NaCl solution with alternating immersion]. Zashchita metallov [Protection of metals], 1999, vol. 35, 6, 600-602. [In Russian].

17. Razdobryeyev V.G. (2020). Vplyv vuhlytsyu na koroziynu povedinku termichno zmitsnennoho prokatu [Influence of carbon on corrosion behavior of thermally strengthened rolled metal]. Fundamentalni i prykladni problemy chornoyi metalurhiyi [Fundamental and applied problems of ferrous metallurgy], 2020, 34, 170-189. [In Ukrainian]. DOI: 10.52150/2522-9117-2020-34-190-201

18. Razdobryeyev V.G., Palamar D.G. (2020). Suchasni tendentsiyi vyrobnytstva koroziynostiykoho i vohnestiykoho nenapruzhenoho armaturnoho prokatu [Modern trends in the production of corrosion-resistant and fire-resistant unstressed reinforcement]. Fundamentalni i prykladni problemy chornoyi metalurhiyi [Fundamental and applied problems of ferrous metallurgy], 34, 190-201. [In Ukrainian]. DOI: 10.52150/2522-9117-2020-34-170-189.

19. Bourgin C., Chauveau E., Dermelin B. (2006). Stainless steel rebar: the choice of service life. La Revue de Metallurgie. CIT, 2006, 2, 89-98. https://doi.org/10.1051/metal:2006159

20. Pickering F.B. (1982). Physical Metallurgy and the design of steels: Materials science series. Moskva: Metallurgy, 1982. 184. [In Russian].

21. Stainless Steel in construction industry (1996). BSSA Conference Report. Steel Times, 1996, 1, 21-

22. Cochrane D.Y. (1996). Austenitic stainless steel – The solution to rebar corrosion. Steel Times, 1996, 1, 19-20.