Semenov Yurii Stanislavovych, Ph.D. (Engin.), Senior Researcher, Head of Technological Equipment and Control Systems Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-2299-5742. Е-mail: yuriy.semenov.isi@gmail.com

Shumelchik Yevhen Ihorovych, Ph.D. (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-5350-6425

Horupakha Viktor Volodymyrovych, Researcher of Blast Furnace Ironmaking Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-0531-1871

Vashchenko Serhii Volodymyrovych, Ph.D. (Engin.), Senior Researcher of Technological Equipment and Control Systems Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-8344-961X

Khudyakov Oleksandr Yuriiovych, Ph.D. (Engin.), Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-6507-1120

Ermolina Kateryna Petrivna, Leading Engineer of Technological Equipment and Control Systems Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107.

Semion Ihor Yuriiovych, Director of Technology and Quality, Metallurgical production of PrJSC “Dniprovskyi Coke Plant”, Kamianske, Ukraine

Chychov Ihor Volodymyrovych, Senior production Master in Technology, Metallurgical production of PrJSC “Dniprovskyi Coke Plant”, Kamianske, Ukraine

INTRODUCTION OF DECISION SUPPORT SYSTEMS FOR BLAST SMELTING CONTROL IN THE CONDITIONS OF METALLURGICAL PRODUCTION OF PRJSC  “DNIPROVSKYI COKE PLANT”

Summery. The aim of the work is to increase the level of automation of blast furnace production through the development and implementation of new systems to support decision-making on the management of blast furnace smelting in changing technological and fuel conditions. The article presents a description of three decision support systems (DSS) in the mode of an adviser to the technological personnel of blast furnaces, which were implemented by the Iron and Steel Institute or underwent pilot testing as part of the automated control system of the blast furnace shop of the metallurgical production of PrJSC “Dniprovskyi Coke Plant” (Kamianske). The first DSS for managing the thermal state was implemented in 2021, it includes the entire list of information necessary for personnel in a convenient and compact form, generates recommendations in case of technology deviations and, in case of incorrect actions of the personnel, signals the need for correct actions. The main recommendations of the system are to correct the raceway adiabatic flame temperature, coke consumption when its characteristics and ore load change. Using the system allows both reducing the specific coke consumption and preventing unplanned downtime. The second DSS for controlling the distribution of fuel additives over air tuyeres is based on information on thermal loads determined on water-cooled elements of tuyere tools. The main recommendations of the system are to adjust the amount of injected pulverized coal fuel on individual tuyeres in order to ensure a uniform distribution of the raceway adiabatic flame temperature around the circumference of the blast furnace and, as a result, the energy efficiency of blast furnace smelting. The third DSS for adjusting the parameters of the charging mode is based on information from the means of controlling the temperatures of the gas flow above the surface of the charge in the blast furnace. The functioning of this system is based on determining the reference curves for the distribution of the gas flow along the furnace radii, corresponding to the minimum consumption of coke and maximum productivity, and on the search for solutions by direct and iterative optimization methods, which allow, by adjusting the loading parameters, to ensure a rational distribution of charge materials and gas flow in the furnace.

Keywords: blast furnace, decision support systems, blast furnace control, thermal state, pulverized coal fuel, blast distribution, thermal probe, blast furnace charging system.

For citation: Semenov Yu.S., Shumelchik Ye.I., Horupakha V.V., Vashchenko S.V., Khudyakov O.Yu., Ermolina K.P., Semion I.Yu., Chychov I.V. Vprovadzhennya system pidtrymky pryynyattya rishen shchodo upravlinnya domennoyu plavkoyu v umovakh metalurhiynoho vyrobnytstva PrAT “DKHZ” [Introduction of decision support systems for blast smelting control in the conditions of metallurgical production of PrJSC “Dniprovskyi Coke Plant”]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 78-94. (In Ukrainian DOI: 10.52150/2522-9117-2021-35-78-94

References

  1. Semenov Yu.S., Shumelchik E.I., Vishnyakov V.I., Nasledov A. V., Semion I. Yu., Zubenko A.V. (2013). Model system for selecting and correcting charging programs for blast furnaces equipped with a bell-less charging apparatus. Metallurgist, 2013, Vol. 56, 9-10, 652-657. https://doi.org/10.1007/s11015-013-9630-3.
  2. Semenov Yu.S., Shumelchik E.I., Horupakha V.V. (2018). Expert Module of the Thermal Probe System for Blast Furnace Charging Control. Steel in Translation, 2018, Vol. 48, 12, 802-806. https://doi.org/10.3103/S0967091218120136.
  3. Semenov Yu.S., Shumelchik E.I., Horupakha V.V. (2017). Blast Furnace Shaft Thermal State Monitoring System. Steel in Translation, 2017, Vol. 47, 11, 728-731. https://doi.org/10.3103/S0967091217110092.
  4. Ivancha N.G., Murav’eva I.G., Shumel’chik E.I. et al. (2018) Complex Mathematical Model of the Distribution of Multicomponent Charge in a Blast Furnace. Metallurgist, 2018, Vol. 62, 1-2, 95-100. https://doi.org/10.1007/s11015-018-0630-1.
  5. Gasparini V.M., Andrade de Castro L. F., Bitarães Quintas A. C. (2017). Thermo-chemical model for blast furnace process control with the prediction of carbon consumption. Journal of Materials Research and Technology, 2017, Vol. 6, 3, 220-225. https://doi.org/10.1016/j.jmrt.2016.12.001.
  6. Agrawal A., Agarwal M.K., Kothari A.K., Mallick S. (2017). A mathematical model to control thermal stability of blast furnace using proactive thermal indicator. Ironmaking & Steelmaking, 2017, Vol. 46, 2, 133-140. https://doi.org/10.1080/ 03019233.2017.1353765.
  7. Semenov Yu.S., Shumelchik E.I., Horupakha V.V. (2018) Diahnostyka ta upravlinnya domennoyu plavkoyu v zminnykh palyvnosyrovynnykh umovakh [Diagnostics and Management of Blast Furnace Smelting in Variable Fuel and Raw Materials Conditions]. Dnipro: Dominanta Print, 2018. 260 p. [In Ukrainian].
  8. Agrawal A., Kothari A.K., Kumar A., Kumar S.M., Kumar D.S., Ramna R.V. et al. (2019). Advances in thermal level measurement techniques using mathematical models, statistical models and decision support systems in blast furnace. Metallurgical Research and Technology, 2019, Vol. 116, 421, 16. https://doi.org/ 10.1051/metal/2019019.
  9. ZhangмR., Lu J., Zhang G. (2011). A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces. European Journal of Operational Research, 2011, Vol. 215, 1, 194-203. https://doi.org/10.1016/ j.ejor.2011.05.037.
  10. Wright B.D., Zulli P. (2011). Application of decision support system for thermal balance control in the ironmaking blast furnace. Chemeca 2011: Engineering a Better World: Sydney, Australia, 18 – 21, September 2011. (p.p. 9).
  11. Lavrov V.V., Spirin N.A., Gurin I.A., Rybolovlev V.Yu., Krasnobaev A.V. (2017). Software for decision-making support in blast-furnace operation. Steel in Translation, 2017, Vol. 47, 8, 538-543. https://doi.org/10.3103/ S0967091217080071.
  12. Semenov Yu.S., Podkorytov A.L., Shumelchik E.I., Horupakha V.V., Semion I.Yu., Orobtsev A.Yu. (2021). Decision Support System for Controlling Thermal State of Blast Furnace Smelting. Steel in Translation, 2021, Vol. 51, 4, 261-266. https://doi.org/10.3103/S0967091221040094.
  13. Tovarovskii I.G. (2015). Poznanie protsessov i razvitie tekhnologii domennoi plavki [Understanding and Development of Blast Furnace Smelting Technology]. Dnepropetrovsk: Zhurfond, 2015. 912 p. [In Russian].
  14. Ivko V.V., Krupii V.G., Rudenko Yu.R. et al. (2009). Analiz effektivnosti primeneniya promyvochnykh materialov dlya bor’by s zagromozhdeniyami gornov domennykh pechey [Analysis of the effectiveness of flushing materials for fight against cluttering the hearth of blast furnaces]. Metallurgicheskaya i Gornorudnaya Promyshlennost [Metallurgical and mining industry], 2009, 3, 17-19. [In Russian].
  15. Kurunov I.F., Bol’shakova O.G. (2007). Briquets for washing blast furnaces. Metallurgist, 2007, Vol. 51, 5-6, 253-261. https://doi.org/10.1007/s11015-007-0048-7.
  16. Kurunov I.F., Shcheglov E.M., Emel’yanov V.L., Titov V.N., Bol’shakova O.G. (2007). Washing the hearth of blast furnaces with briquets made from scale. Metallurgist, 2007, Vol. 51, 5-6, 306-311. https://doi.org/10.1007/s11015-007-0057-6.
  17. Semenov Yu.S., Horupakha V.V., Shumelchik Ye.I. (2020). Measures for Preventing Disruption in the Blast Furnace Operation under Use of Pulverized Coal. Steel in Translation, 2020, Vol. 50, 2, 100-106. https://doi.org/10.3103/S0967091220020096.
  18. Semenov Yu.S., Horupakha V.V., Vashchenko S.V., Khudyakov O.Yu., Shumelchik Ye.I. (2021). Realyzatsyya kompleksa promyvok domennykh pechey pry vduvanyy PUT y yspolzovanyy shykhtovykh materyalov peremennoho kachestva [Accomplishment of complex of ablution of blast furnaces at PC injection and usage of charge materials of variable quality]. Chernaya metallurhyya. Byul. NTY [Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information], 2021, Vol. 77, 12, 1239-1252. [In Russian]. https://doi.org/10.32339/0135-5910-2021-12-1239-1252.
  19. Semenov Yu.S., Podkorytov O.L., Horupakha V.V. et al. (2020). Novi naukovi i prykladni rezultaty doslidzhen efektyvnosti vykorystannya pylovuhilnoho palyva pry vyrobnytstvi chavunu i vypali vapnyaku [New scientific and applied results of studies efficiency use of pulverized coal in the production of cast iron and lime burning]. Metal ta lyttya Ukrayiny [Metal and casting of Ukraine], 2020, 2, 15-26. https://doi.org/10.15407/steelcast2020.02.015. [In Ukrainian].
  20. Semenov Yu.S., Horupakha V.V., Semion I.Yu. et al. (2019). Effektivnost’ realizatsii okruzhnoy neravnomernosti raspredeleniya PUT po vozdushnym furmam domennoy pechi [Effectiveness of implementation of the circumferential uneven pulverized coal distribution on the blast furnace air tuyeres]. Chernye Metally [Ferrous metals], 2019, 10, 11-16. [In Russian].
  21. Semenov Yu.S., Horupakha V.V., Shumelchik E.I., Alter M.A. (2021) Blast Furnace Operation Improvement by Forming Uniform Circular Distribution of Raceway’s Thermal Mode. AISTech 2021 – Proceedings of the Iron & Steel Technology Conference, 29 June–1 July 2021, Nashville, Tenn., USA (p.p. 184-192). https://doi.org/10.33313/382/018.
  22. Semenov Yu.S., Gorupakha V.V., Kuznetsov A.M. et al. (2020). Experience of Using Manganese-Containing Materials in Blast-Furnace Charge. Metallurgist, 2020, Vol. 63, 9-10, 1013-1023. https://doi.org/10.1007/s11015-020-00920-1.
  23. Kanaev V.V., Kobeza I.I., Buzoverya М.Т. et al. (1995). Kontrol’ raspredeleniya dut’ya po vozdushnym furmam domennoy pechi [Control of blast distribution on air blast furnace tuyeres]. Metallurgicheskaya i Gornorudnaya Promyshlennost [Metallurgical and mining industry], 1995, 2, 69-71. [In Russian].
  24. Bol’shakov V.I., Shuliko S.T., Kanaev V.V. et al. (1999). Investigation of gas Distribution in a Large–Volume Blast Furnace. Steel in Translation, 1999, Vol. 29, 12, 1-5.
  25. Bol’shakov V.I., Shuliko S.T., Kanaev V.V. et al. (1997). Study of the charge and gas–flow distributions in a large blast furnace with a bell-less charging apparatus. Metallurgist, 1997, Vol. 41, 12, 389-390.
  26. Bolshakov V.I., Semenov Yu.S., Kuznetsov A.M. (2013). The Experience of the Implementation of Modern Blast Furnace Equipped with Bell-Less Top Charging Device under Conditions of Changing Quality of Charge Materials. Metallurgical and Mining Industry, 2013, Vol. 5, 2, 56-64.
  27. Semenov Yu.S., Shumelchik E.I., Horupakha V.V. et al. (2017). Using Thermal Probes to Regulate the Batch Distribution in a Blast Furnace with Pulverized-Coal Injection. Steel in Translation, 2017, Vol. 47, 6, 389-393. https://doi.org/10.3103/S0967091217060092.
  28. Semenov Yu.S., Shumel’chik E.I., Gorupakha V.V. (2018). Efficient Management of the Charging of Blast Furnaces and the Application of Contemporary Means of Control Over the Variable Technological Conditions. Metallurgist, 2018, Vol. 61, 11–12, 950-958. https://doi.org/10.1007/s11015-018-0591-4.
  29. Semenov Yu.S. (2017). Temperature Distribution of the Gas Flux in Blast Furnaces. Steel in Translation, 2017, Vol. 47, 7, 473-477. https://doi.org/10.3103/ S0967091217070117.
  30. Shumelchyk Ye., Semenov Yu., Horupakha V. et al. (2021). Model-Based Decision Support System for the Blast Furnace Charge of Burden Materials. Applied Condition Monitoring, 2021, 340-351. https://doi.org/10.1007/978-3-030-82110-4_18.
  31. Semenov Yu.S. (2020). Razrabotka i realizatsiya novykh podkhodov k diagnostike i upravleniyu domennoy plavkoy [Elaboration and realization of new approaches to diagnostic and control of blast furnace heat]. Chernaya metallurgiya. Byul. NTI [Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information], 2020, Vol. 76, 2, 123-131. https://doi.org/10.32339/0135-5910-2020-2-123-131. [In Russian].
  32. Semenov Yu.S. (2018). Ispol’zovaniye informatsii termozondov dlya upravleniya zagruzkoy domennoy pechi [Using of thermal probes information to control blast furnace charging]. Metallurgicheskaya i Gornorudnaya Promyshlennost [Metallurgical and mining industry], 2018, 7, 208-215. [In Russian].