Kornilov Bohdan Volodymyrovych, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-5544-3023. E-mail: balesan2209@gmail.com

Chaika Oleksii Leonidovych, PhD (Engin.), Senior Researcher, Head of laboratory of heat engineering and energy-saving technologies, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0003-1678-2580

Lebid Vitalii Vasylovych, PhD (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0003-3938-3785

Shumelchik Yevhen Ihorovych, Ph.D. (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0001-5350-6425

Moskalina Andrii Oleksandrovych, PhD, Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0001-9552-2853

THE THERMAL WORK ANALYSIS OF THE FIREPLACES OF BLAST FURNACES OF UKRAINE OF VARIOUS DESIGNS

Summary. The aim of the work is to study modern ways to increase the operational reliability of the furnace and hearth of blast furnaces, which largely determine the duration of the blast furnace campaign. The article analyzes the ways to increase the stability of the furnace and hearth, presents the results of the analysis of thermal work and ignition of the lining of metal receivers of blast furnaces of different designs. The modern directions of construction of the metal receiver of blast furnaces are determined. It is shown that the modern methodology of construction of blast furnace furnaces develops two main directions: the use of a coordinated combination of refractory materials with a cooling system; use of a combination of wear-resistant materials based on carbon and ceramics. However, even the improvement of the design and cooling system of the metal receiver does not allow to fully increase the duration of the campaign. To assess the service life of the furnace, it is necessary to provide regular automated control of the ignition of the furnace lining and hearth.

In Ukraine, during the renovation of blast furnaces, the design of metal receivers with the use of “ceramic glass” was preferred. To date, the system of monitoring the thermal work and ignition of the furnace has been implemented in 10 blast furnaces using the automatic control system “Horn” developed by the HMI NASU. The implementation of continuous control over the ignition of the furnace in blast furnaces allowed us to assess the effect of the use of ceramic cups. The value of heat losses of the furnace and the cost of coke for their compensation are estimated. Methods and models for determining the thermal state and wear of the metal receiver lining based on a combination of calorimetric and thermometric control methods have been developed. Comparison of heat losses of the metal receiver in the cooling system of blast furnaces allows to quantify the thermal performance of controlled areas and the furnace as a whole. It is shown that the specific value of heat loss of the metal receiver per unit volume of the blast furnace can serve as an integral parameter. It is established that the value of specific heat losses per unit volume of the blast furnace with a ceramic cup is ~ 0.4-0.7 kW/m3, which is much less than blast furnaces without it (~ 0.9-1.1 kW/m3). Ceramic glass saves coke about 1 kg/t of cast iron.

Key words: metal receiver, monitoring, heat loss, “ceramic glass”, coke consumption.

For citation: Kornilov B.V., Chaika O.L., Lebid. V.V., Shumelchik Ye.I., Moskalina A.O. Analiz teplovoi roboty hornu ta podu domennykh pechei Ukrainy riznoi konstruktsii [The thermal work analysis of the fireplaces of blast furnaces of Ukraine of various designs]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 55-68 (In Ukrainian).

DOI: 10.52150/2522-9117-2021-35-55-68

References

  1. Mittad (2005). Progress v oblasti ogneupornoj futerovki gornov domennyh pechej [Progress in the field of refractory lining of hearths of blast furnaces]. Stal [Steel], 2005, 11, 20-22 [In Russian].
  2. Petke , Shtisovich T., Silven P. (2005). Novaya koncepciya futerovki gorna i leshchadi domennoj pechi kombinata Salzgitter Flachstahl [A new concept of lining of hearth and heart bottom on blast furnace of the Salzgitter Flachstahl plant]. Stal [Steel], 2005, 7, 27-31 [In Russian].
  3. Kovalski , Lyungen H.B., Shtrikker K.P. (1999). Stojkost domennyh pechej: sovremennyj uroven, razvitie i meropriyatiya po prodleniyu kampanii [Blast Furnace Sustainability: State of the Art, Development and Campaign Extension Measures]. Chernye metally [Ferrous metals], 1999, 9, 26-35 [In Russian].
  4. Vilms , Yang J., Lyungen G.B., Peters M., Shmele P. (1993). Udlinenie kampanii domennoj pechi – faktory, vliyayushchie na stojkost futerovki gorna [Elongation of the blast furnace campaign – factors affecting the durability of the hearth lining]. Chernye metally [Ferrous metals], 1993, 6, 35-48 [In Russian].
  5. Noort , Ruoff J., Schmidt K., Stolwijk C., Stralen J.V. (1994). Modernization and Reline of Hoogovens № 7 Blast Furnace. Iron and Steel Engineer, 1994, 71 (10), 29-34.
  6. Novye koncepcii v konstrukcii futerovki i sistem ohlazhdeniya domennyh pechej [New concepts in the design of lining and cooling systems for blast furnaces]. (1997). Novosti chernoj metallurgii za rubezhom [News of ferrous metallurgy], 1997, 1, 19-26 [In Russian].
  7. Stewart , Titterington B., James E.T. (1996). Blast Furnace Hearth Design and Operation for Long Campaign Life. Proceedings of 3rd Eurp. Iron. Congress, Belgium. p.p. 248-256.
  8. Hebel , Hille F. (2008). Futerovka gorna domennoj pechi i koncepciya ohlazhdeniya [Blast furnace hearth lining and cooling concepts]. Chernye metally [Ferrous metals], 2008, 7, 39-45 [In Russian].
  9. Bolshakov I., Borodulin A.V., Listopadov V.S., CHajka A.L., Sohackij A.A., Shvachka A.I. (2014). Kontrol summarnoj velichiny teplovyh poter s ohlazhdayushchej vodoj na pechah domennogo cekha i ih prakticheskoe prilozhenie [Control of the total value of heat losses with cooling water in the furnaces of the blast furnace and their practical application]. Sb. nauchnyh trudov mezhdunarodnoj nauchno-prakticheskoj konferencii “Tvorcheskoe nasledie V. E. Grum-Grzhimajlo”, posvyashchennaya 150-letiyu so dnya rozhdeniya Vladimira Efimovicha Grum-Grzhimajlo» [Proceedings of the international scientific-practical conference Creative heritage of V.E. Grum-Grzhimailo, dedicated to the 150th anniversary of the birth of Vladimir Efimovich Grum-Grzhimailo]. Ekaterinburg: 26-28 marta. (p.p. 74-80) [In Russian].
  10. Sadri A., Gebski P., Rampersad A., Marinelli P., Doro E. (2010). Comparing the accuracy of Acousto Ultrasonic-Echo (NDT), Finite Element Analysis (FEA), and Drilling, when obtaining a blast furnace refectory lining wear profile. Iron and Steel technology, 2010, 70-81.
  11. Harlamov A., Kobernik O.P., Ansimov A.A. (2013). Metody kontrolya razgara ogneupornoj futerovki v promyshlennyh pechah [Methods for Controlling the Rise of a Refractory Lining in Industrial Furnaces]. Fundamentalnye issledovaniya [Fundamental Research], 2013, 6, 877-879 [In Russian].
  12. Kudinov A. (1988). Ohlazhdenie sovremennyh domennyh pechej [Cooling of modern blast furnaces]. Moskva: Metallurgiya. 1988. 256 [In Russian].
  13. Gavrilov E., Ulyanov A.G., Kanaev V.V., Mozharenko N.M. (1987). Diagnostirovanie sostoyaniya futerovki metallopriemnika domennoj pechi po teplovym nagruzkam [Diagnosis of the condition of the lining of the metal receiver of a blast furnace by thermal loads]. Stal [Steel], 1987, 1, 13-15 [In Russian].
  14. Vasilev G., Levchenko V.E., Alpaev N.E., Shulga A.V. (1992). Ultrazvukovoj kontrol iznosa futerovki shahty domennoj pechi [Ultrasonic monitoring of blast-furnace shaft lining wear]. Metallurgicheskaya i gornorudnaya promyshlennost [Metallurgical and mining industry], 1992, 3, 3-5 [In Russian].
  15. Pinchuk A., Panchoha G.V., Kanaev V.V., Mozharenko N.M. (2005). Sovremennye metody kontrolya ostatochnoj tolshchiny futerovki metallopriemnika domennoj pechi [Modern methods of controlling the residual thickness of the lining of the metal receiver of a blast furnace]. Fundamentalnye i prikladnye problemy chernoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2005, 11, 247-253 [In Russian].
  16. Panchoha V., Kanaev V.V. et al. (1998). Sistema operativnogo promyshlennogo kontrolya sostoyaniya iznosa futerovki metallopriyomnika DP№5 OAO “Severstal” [The system of operational industrial monitoring of the wear of the lining of the metal receiver DP No. 5 of OAO Severstal.]. Progressivnye processy i oborudovanie metallurgicheskogo proizvodstva. Materialy pervoj mezhdunarodnoj nauchno–tekhnicheskoj konferencii [Proceedings of the first international scientific and technical conference Progressive processes and equipment of metallurgical production]. Cherepovec: 1998, (p.p. 18-20) [In Russian].
  17. Chajka L., Sohackij A.A., Panchoha G.V., Cyupa K.S., SHostak V.YU., Kornilov B.V. (2014). Sovershenstvovanie konstrukcii shahty i metallopriemnika domennyh pechej pri ispolzovanii pyleugolnogo topliva [mproving the design of the mine and the metal receiver of blast furnaces using pulverized coal fuel]. Ekologiya i promyshlennost [Ecology and industry], 2014, 2, 28-35 [In Russian].
  18. Chaika L., Lebid V.V., Kornilov B.V., Shumelchik E.I., Karikov S.A., Safonov S.E. (2021). Realizaciya kompleksa modelej dlitelnogo i energosberegayushchego proizvodstva chuguna na domennyh pechah Ukrainy [Implementation of a Set of Long-Term and Energy-Saving Cast Iron Production Models in Blast Furnaces in Ukraine]. Stal [Steel], 2021, 3, 15-18 [In Russian]. https://doi.org/10.3103/S0967091221030025
  19. Chaika L., Kornilov B.V., Lebid V.V., Naboka V.I., Safonov S.E., Mandra V.V. et al. (2020). Avtomatizirovannyj kontrol teplovyh poter v sisteme ohlazhdeniya i ocenka raskhoda koksa na ih kompensaciyu na domennyh pechah PAO “Zaporozhstal” [Automated control of heat losses in the blast furnaces cooling system and evaluation of the coke consumption for their balancing at PJSC Zaporizhstal]. Stal [Steel], 2020, 8, 11-13 [In Russian].