Babachenko Oleksandr Ivanovych, Dr. Sci. (Engin.), Senior Research Scientist, Director, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-4710-0343. E-mail:

Nesterov Oleksandr Stanislavovych, PhD (Engin.), Senior Researcher, Head of Department, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-0183-0327

Garmash Larysa Ivanivna, Ph.D. (Engin.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107. ORCID 0000-0002-6873-6685


Summary. In recent years more and more actively work has been carried out in the direction of decarbonization of metallurgical processes as part of an active “green” campaign to reduce energy intensity and harmful emissions. Metallurgy of the future is increasingly called hydrogen. The article presents an analysis of the main promising directions of the transition of the world ferrous metallurgy to waste-free and environmentally friendly technologies, carbon neutrality and the maximum reduction of greenhouse gas emissions. The advantages and problems of “green” steel production are analyzed. An overview of pilot projects for the transition to carbon-free steel production at the world’s largest metallurgical plants by using hydrogen instead of fossil fuels is given. The advantages and problems of using “gray”, “green” and “blue” “carbon-neutral” hydrogen are analyzed. It is shown how the ideas about the role of hydrogen as a reducing agent in the blast furnace process were deepened and refined in the historical context in accordance with changes in the technology of blast furnace smelting and the contribution of ISI scientists to these studies. The main directions of modern developments in the field of decarbonization of metallurgical processes are given. The most promising are two areas of obtaining “green steel” currently – the injection of hydrogen into a blast furnace and the process of direct reduction of iron using hydrogen instead of fossil fuel. Investigations to determine the physicochemical regularities of the reduction processes in a blast furnace with the participation of hydrogen continue at the ISI at the present time. The results of laboratory studies of the influence of a reducing gas with a variable hydrogen content on the nature of the reduction of agglomerate and pellets in the “dry” zone of a blast furnace are presented.

Key words: decarbonization of metallurgy, low-carbon technologies, blast furnace, “green” hydrogen, reduction processes, blast furnace gas, blast furnace gas, coke oven gas.

For citation: Babachenko O.I., Nesterov O.S., Garmash L.I. Nyzkovuhletsevi tekhnolohiyi u domennomu vyrobnytstvi [Low-carbon technologies in blast-furnace production]. Fundamental’nye i prikladnye problemy černoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2021, 35, 34-54. (In Ukrainian).

DOI: 10.52150/2522-9117-2021-35-34-54


  1. Iron and Steel Technology Roadmap. Retrieved from
  2. Ali Hasanbeigi, Marlene Arens, Jose Carlos Rojas Cardenas, Lynn Price, Ryan Trioloa. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Production in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. 2016, Volume 113, 127-139.
  3. Jopp K. (2014). Realistichnye celevye pokazateli dlya vybrosov chernoj vetallurgii. [Realistic targets for iron and steel emissions]. Chernye metally, 2014, 1, 54-55. [In Russian].
  4. Kick-off Workshop for the IEA Global Iron & Steel Technology Roadmap. Retrieved from
  5. Technology Assessment and Roadmapping. Retrieved from
  6. Powering a climate-neutral economy: Commission sets out plans for the energy system of the future and clean hydrogen. Retrieved from
  7. Hydrogen in North-Western Europe. Retrieved from
  8. Injection Of Hydrogen Into Blast Furnace: Thyssenkrupp Steel Concludes First Test Phase Successfully. Retrieved from
  9. Nemeckaya Salzgitter nachala prodazhi “zelenoj” [German Salzgitter starts selling green steel]. Retrieved from [In Russian].
  10. Avstrijskaya Voestalpine zapatentovala tekhnologiyu “zelenogo” proizvodstva stali. [Austrian Voestalpine patented green steel production technology]. info. Retrieved from [In Russian].
  11. “Metalloinvest” planiruet dostignut’ uglerodnoj nejtral’nosti k 2050 godu. [Metalloinvest plans to achieve carbon neutrality by 2050]. info. Retrieved from [In Russian].
  12. ArcelorMittal primet uchastie v vodorodnom proekte v Gamburge. [ArcelorMittal to take part in hydrogen project in Hamburg]. info. Retrieved from [In Russian].
  13. V Shvecii vybrali ploshchadku dlya stroitel’stva zavoda vodorodnoj metallurgii. [Sweden has chosen a site for the construction of a hydrogen metallurgy plant]. Retrieved from [In Russian].
  14. Launch of Hydrogen in Latin America. Retrieved from
  15. Japan will have to tread a unique pathway to net zero, but it can get there through innovation and investment. Retrieved from
  16. Minenergo razrabotalo tri dokumenta dlya podgotovki Vodorodnoj strategii Ukrainy [The Ministry of Energy has developed three documents for the preparation of the Hydrogen Strategy of Ukraine]. info. Retrieved from [In Russian].
  17. Metallurgiya Ukrainy. Viziya 2030. [Metallurgy of Ukraine. Vision of metallurgical sector development 2030]. center. Retrieved from  [In Russian].
  18. Bol’shina E.P. (2012). Ekologiya metallurgicheskogo proizvodstva. [Ecology of metallurgical production]. Novotroick: NF NITU “MISiS”, 2012. 155. [In Russian].
  19. Ukraina obyazalas’ otkazat’sya ot uglya k 2040 godu. [Ukraine pledged to phase out coal by 2040]. Retrieved from [In Russian].
  20. Promyshlennoe proizvodstvo “zelenoj stali”. [Industrial production of “green steel” will begin no earlier than in 25-30 years]. info. Retrieved from [In Russian].
  21. Howarth R.W., Jacobson M.Z. (2021). How green is blue hydrogen? Energy Science & Engineering, 2021, Vol. 9, Issue 10, 1676-1687
  22. Retrieved from
  23. The International Renewable Energy Agency (IRENA). org. Retrieved from
  24. fon Bogdandi, G.-YU. Engel’. (1971). Vosstanovlenie zheleznyh rud [Recovery of iron ores]. Moskva: Metallurgiya, 1971. 242. [In Russian].
  25. Simonov K., Grishin A.M., Ivashchenko V.P. (2006). Raschety po teorii processov vosstanovleniya [Calculations according to the theory of recovery processes]. Dnepropetrovsk: NMetAU, 2006. 48. [In Russian].
  26. Pavlov A. (1945). Metallurgiya chuguna [Iron metallurgy]. Metallurgizdat, 1945. 350. [In Russian].
  27. Shapovalov A. (1958). O vduvanii vosstanovitel’nyh gazov v gorn domennoj pechi [Injection of reducing gases into the hearth of a blast furnace]. Stal. 1958, 5, 385-390. [In Russian].
  28. Lyubav P. (1962). Analiz yavlenij domennogo processa [Analysis of the phenomena of the blast-furnace process]. Moskva: Metallurgizdat, 1962. [In Russian].
  29. Krasavtsev N.I. Nekotorye teoreticheskie voprosy, svyazannye s vduvaniem v domennuyu pech’ vosstanovitel’nyh gazov [Some theoretical issues related to the injection into the blast furnace of reducing gases]. Izv. VUZov. Chernaya metallurgiya [Izvestiya. Ferrous metallurgy], 1961, 112, 31-39. [In Russian].
  30. Ostrik N., Rostovcev S.T. (1962). Vliyanie sostava gazovoj fazy na kinetiku vosstanovleniya oflyusovannogo aglomerata [Influence of the composition of the gas phase on the kinetics of reduction of the fluxed agglomerate]. Izvestiya VUZov. Chernaya metallurgiya [Izvestiya. Ferrous metallurgy], 1962, 9, 17-25. [In Russian].
  31. Goldshtejn L. (1971). Vodorod v domennom processe [Hydrogen in the blast furnace]. Moskva: Metallurgiya, 1971. 208. [In Russian].
  32. Roze (1975). Poluchenie gaza-vosstanovitelya dlya pryamogo vosstanovleniya rud [Obtaining a reducing gas for direct reduction of ores]. Chernye metally [Ferrous metals]. 1975, 21, 3-7. [In Russian].
  33. Bigeev A., Vdovin K.N., Kolokolcev V.M. (2017). Osnovy metallurgicheskogo proizvodstva [Fundamentals of metallurgical production]. Sankt-Peterburg: Lan’, 2017. 614. [In Russian].
  34. Rogozhnikov P., Rogozhnikov I.S. (2020). Vliyanie vodoroda prirodnogo gaza na izmenenie teplovogo i vosstanovitel’nogo processov po radiusu domennoj pechi [The influence of natural gas hydrogen on the change in thermal and reduction processes along the radius of the blast furnace]. Chernaya metallurgiya. Byulleten’ nauchno-tekhnicheskoj i ekonomicheskoj informacii [Ferrous Metallurgy. Bulletin of Scientific, Technical and Economical Information], 2020, Vol. 76, 1, 41-49. [In Russian].
  35. Kozub N., Andronov V.N., Bachinin A.A. (1971). Domennaya plavka s vduvaniem goryachih vosstanovitel’nyh gazov na zavode “Azovstal'” [Blast-furnace smelting with injection of hot reducing gases at the Azovstal plant]. Stal’ [Steel], 1971, 1, 12-15. [In Russian].
  36. Voloshin S., Ruskih B.P., Zotov D.S. (2020). Tekhnіchne pereozbroєnnya і vdoskonalennya tekhnologіi domennogo virobnictva metalurgіjnogo kombіnatu “Azovstal'” [Technical re-equipment and improvement of blast furnace production technology of Azovstal metallurgical plant]. Metall i lit’e Ukrainy [Metal and casting of Ukraine], 2020, 3, 13-18. [In Russian].
  37. Nekrasov I., Strashnikov I.V., Homyakov E.S. (1973). Opytnaya domennaya plavka s primeneniem smesi koksovogo i prirodnogo gazov [Experimental blast furnace smelting using a mixture of coke and natural gases]. Metallurgiya chuguna [Iron metallurgy], 1973, 1, 69-81. [In Russian].
  38. Nekrasov I., Strashnikov I.V., Homyakov E.S. (1973). Tekhnologicheskie i ekonomicheskie aspekty primeneniya koksovogo gaza v domennom proizvodstve CCCP [Technological and economic aspects of coke oven gas application in USSR blast furnace production]. Metallurgiya chuguna [Iron metallurgy], 1973, 1, 81-84. [In Russian].
  39. Bugaev M. (1977). Okislenie prirodnogo gaza v furmennoj zone domennoj pechi pri razlichnyh parametrah kombinirovannogo dut’ya [Oxidation of natural gas in the lance zone of the blast furnace at different parameters of the combined blast]. Metallurgicheskaya i gornorudnaya promyshlennost’ [Metallurgical and mining industry], 1977, 1, 5-7. [In Russian].
  40. Didevich V. (1970). Nekotorye osobennosti teplovogo rezhima gorna pri rabote na kombinirovannom dut’e [Some features of a thermal mode of a furnace when working on the combined blowing]. Collection of works DONNIICHM, 1970. 68-74. [In Russian].
  41. Tovarovskij G., Gladkov N.A., Nesterov A.S. (1994). Osobennosti formirovaniya rasplava v usloviyah malokoksovoj domennoj plavki [Features of melt formation in the conditions of low-coke blast furnace melting]. Stal’ [Steel], 1994, 2, 9-12. [In Russian].
  42. Otchet NIR ICHM. (1984). “Povyshenie effektivnosti ispol’zovaniya koksovogo gaza v domennyh pechah Makeevskogo metallurgicheskogo kombinata za schet racional’nogo raspredeleniya ego mezhdu pechami i sovershenstvovaniya rezhima domennoj plavki s dovedeniem koefficienta zameny prirodnogo gaza koksovym do 2,7-3,0 m3/m3. [ICM R&D report “Improving the efficiency of coke oven gas use in blast furnaces of the Makeyevka Metallurgical Plant due to its rational distribution between furnaces and improving the blast furnace smelting regime with bringing the natural gas coke replacement rate to 2.7-3.0 m3/ m3“. [In Russian].
  43. Methods and systems for producing direct reduced iron and gaseous fuel for a steel plant: US Pat. RU (11) 2 675 581 (13) C2. US [In Russian].
  44. Nekrasov I., Gladkov N.A., Sidorova L.Ya. (1974). Primenenie hromatograficheskogo analiza pri issledovanii kinetiki vosstanovleniya i nakopleniya gazoobraznyh produktov reakcii. Sbornik Novye metody issledovaniya processov vosstanovleniya chernyh metallov [Application of chromatographic analysis in the study of the kinetics of reduction and accumulation of gaseous reaction products: Collection of scientific works “New methods of research of ferrous metals reduction processes”]. Moskva: Nauka. 1974. 76-77. [In Russian].
  45. Nekrasov I., Sidorova L.YA., Gladkov N.A. (1975). Osobennosti vzaimodejstviya okislov zheleza s metanom. Soobshchenie 1 [Features of interaction of iron oxides with methane. Message 1]. Izv. VUZov. Chernaya metallurgiya [Izvestiya. Ferrous metallurgy], 1975, 11, 15-18. [In Russian].
  46. Gladkov A. (2009). Analiz opyta ispolzovaniya kombinirovannogo dutya [Analysis of the experience of using combined blowing]. Fundamental’nye i prikladnye problemy chernoj metallurgii [Fundamental and applied problems of ferrous metallurgy], 2009, 20, 37-44. [In Russian].
  47. Nekrasov I, Moskalina F.N. (1962). Sostav gaza v gorne domennoj pechi pri rabote na prirodnom gaze i obychnom dut’e [The composition of the gas in the furnace of the blast furnace when working on natural gas and conventional blasting]. Stal [Steel], 1962, 9, 773-776. [In Russian].
  48. Nekrasov I, Moskalina F.N., Mozharenko N.M. (1973). Osobennosti processov vosstanovleniya v shahte domennoj pechi pri primenenii prirodnogo gaza i dut’ya s koncentraciej kisloroda do 30% [Features of reduction processes in the blast furnace mine with the use of natural gas and blast with an oxygen concentration of up to 30%]. Metallurgiya chuguna [Iron metallurgy], 1973, 1, 56-69. [In Russian].
  49. Tovarovskiy G. (2003). Domennaya plavka. Evolyuciya, hod processov, problemy i perspektivy [Blast furnace smelting. Evolution, course of processes, problems and prospects]. Dnepropetrovsk: Porogi, 2003, 597. [In Russian].