Razdobreev Valery Guriyovych, PhD (Engin.), Senior Researcher, Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: v_razdobreev@mail.ru; ORCID 0000-0001-7402-7992

Palamar Dmitry Grigorovich, Junior Researcher (Engin.), , Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; ORCID 0000-0002-9503-3248

 

Modern trends in the production of corrosion-resistant and fire-resistant stress-free reinforcing bars

 

Summary.The aim of this work is to study modern methods of production of corrosion-resistant and fire-resistant stress-free reinforcing bars in the world. Non-stressed reinforcing bars are used as working, structural and assembly reinforcement in conventional building structures, as well as in various types of prestressed structures: from openwork prefabricated to huge monolithic hydraulic structures, therefore, its assortment produced by the domestic metallurgical industry in the range from 5,5 to 40 mm in the nominal diameter of a smooth profile and from 6,0 to 40 mm for a periodic profile. Recently, in the world, much attention is paid to the design and construction of buildings and structures with an improved complex of consumer properties, intended, in particular, for work in corrosive and fire hazardous environments. Such developments are not currently being conducted in Ukraine. In the world and in Europe, to increase corrosion resistance and fire resistance, as well as for the manufacture of seismically resistant reinforcing bars (δmax≥7,5 %), hot-rolled low-alloyed (additionally alloyed with V and Mo) and microalloyed steel grades without the use of heat treatment or cold-deformed (cоld stretched) from hot rolled strip of periodic profile. In GOST 34028-2016 for the countries of the Customs Union, it is clearly stated that for the reinforcement of prefabricated reinforced concrete structures and monolithic reinforced concrete, unstressed reinforcing bars in bars or coils with a nominal diameter of 4,0 to 40 mm are also used for the production of such rolled products, low-carbon and low-alloy steel grades are used, which microalloy V, Nb, Mo or add nitride-forming elements Al, Ti, V, Nb. In this case, either hot rolling or cold deformation or heat treatment in the flow of the rolling mill is used. An alternative way of producing corrosion-resistant and fire-resistant stress-free reinforcing bars in the world is the use of stainless steel as a material. Such profiled reinforcing bars are produced in the range of 3,0 to 50 mm by hot rolling or cold deformation. The use of modern technologies for the production of stainless steel reinforcing bars, starting with the addition of effective and high-quality alloying elements and additives in the production of liquid steel and effective methods of metal pressure treatment, which allows us to guarantee the material saving from corrosion and high temperatures in case of fire. A significant disadvantage of this rolled product is its rather high cost.

 

Keywords: reinforcing bars, corrosion resistance, fire resistance, low-alloy and micro-alloy steel, stainless steel, hot rolling, cold deformation.

 

References

Steel Statistical Yearbook. (2019). World Steel Association. Retrieved from: https://www.worldsteel.org/media-centre/press-releases/2020/Global-crude-steel-output-increases-by-4.6–in-2019.html

Ukrayina v svitovomu metalurhiynomu vyrobnytstvi u 2019 r [Ukraine in world metallurgical production in 2019]. Retrieved from: https://www.ukrmetprom.org/ukraina-v-svitovomu-metalurgiynomu-v-7. [In Ukrainian].

Odesskiy P.D. (2008). Sovremennyye stali dlya stroitelnykh metallicheskikh konstruktsiy i voprosy ekonomicheskoy effektivnosti [Modern steels for building metal structures and issues of economic efficiency]. Stal [Steel], 2018, 12, 57-61. [In Russian].

Konovalov O.F., Ryzhenkov O.A. & Korolov V.P. (2004). Systemnyy pidkhid do monitorynhu koroziyi ta zakhystu metalevykh konstruktsiy [System approach to corrosion monitoring and protection of metal structures]. Fizykokhimichna mekhanika materialiv [Physicochemical mechanics of materials], 2004, 5, 99-103. [In Ukrainian].

Yaroslavtseva O. V., Ostanina T. N., Rudoy V. M. & Murashova I. B. (2015). Korroziya i zashchita metallov. Yekaterinburg: UrFU, 2015, 90. [In Russian].

Shabalov I. P., Matrosov YU. I., Kholodnyy A. A., Matrosov M. YU. & Velikodnev V.YA. (2017). Stal dlya gazonefteprovodnykh trub, stoykikh protiv razrusheniya v serovodorodnykh sredakh [Steel for oil and gas pipes resistant to destruction in hydrogen sulfide environments]. Moskva: Metallurgizdat, 2017, 322. [In Russian].

Petrova L. G., Timofeyeva G.YU., Demin P. Ye. & Kosachev A. V. (2016). Osnovy elektrokhimicheskoy korrozii metallov i splavov [Fundamentals of electrochemical corrosion of metals and alloys]. Moskva: MADI, 2016. 148 p. [In Russian].

Gottshteyn G. (2014). Fiziko-khimicheskiye osnovy materialovedeniya [Physical and chemical foundations of materials science]. Moskva: BINOM, 2014, 403. [In Russian].

Pakhomov V.S. (2013). Korroziya metallov i splavov [Corrosion of metals and alloys]. (Vols. 1-2). Moskva: Nauka i tekhnologiya, 2013. [In Russian].

Pachurin G.V. (2014). Korrozionnaya dolgovechnost izdeliy iz deformatsionno-uprochnennykh metallov i splavov [Corrosion durability of products made of strain-hardened metals and alloys]. Sankt-Peterburg: Lan, 2014, 160. [In Russian].

Berezovskaya V.V. (2019). Korrozionno-stoykiye stali i splavy [Corrosion-resistant steels and alloys]. Yekaterinburg: UrFU, 2019, 244. [In Russian].

Lazutkina O.R. (2014). Khimicheskoye soprotivleniye i zashchita ot korrozii [Chemical resistance and corrosion protection]. Yekaterinburg: UrFU, 2014, 140. [In Russian].

Domov D.V., Frantov I.I. & Seregin A.N. et al. (2015). Vliyaniye vanadiya na mekhanicheskiye i potrebitelskiye svoystva svarivayemoy armaturnoy stali klassov prochnosti A500S i A600S [The influence of vanadium on the mechanical and consumer properties of welded reinforcing steel of strength classes A500C and A600C]. Metallurg [Metallurgist], 2015, 10, 65-69. [In Russian].

Domov D.V., Frantov I.I. & Bortsov A.N. et al. (2015). Kriterii otsenki svarivayemosti armaturnykh staley [Criteria for assessing the weldability of reinforcing steels]. Metallurg [Metallurgist], 2015, 5, 58-62. [In Russian].

Lanskaya K.A. (1959). Zharoprochnyye stali [Heat-resistant steels]. Moskva: Metallurgizdat, 1969, 246 p. [In Russian].

Pridantsev M.V. & Lanskaya K.A. (1959). Stali dlya kotlostroyeniya [Steel for boiler building]. Moskva: Metallurgizdat, 1959, 256 p. [In Russian].

Pravila po obespecheniyu ognestoykosti i ognesokhrannosti zhelezobetonnykh konstruktsiy [Rules for ensuring fire resistance and fire safety of reinforced concrete structures]. (2008). STO 36554501-006-2006. Moskva: OAO «NITS Stroitelstvo», 2008, 78 p. [In Russian].Mezhgosudarstvennyy Standart. Prokat armaturnyy dlya zhelezobetonnykh konstruktsiy [Reinforcing rolled products for reinforced concrete constructions. Specifications]. (2019). GOST 34028-2016. Moskva: Standartinform, 76p. [In Russian].Prokat armaturnyy dlya zalizobetonnykh konstruktsyy. Zahalni tekhnichni umovy [Rolled products for reinforcement of ferroconcrete structures. General specification]. (2019). DSTU 3760:2019. Kyiv: DP “UkrNDNTS”. [In Ukrainian].Stal dlya armuvannya betonu. Zvaryuvalna armaturna stal. Zahalni tekhnichni umovy [Steel for reinforcement of concrete. Weldable reinforcing steel. General specification]. (2012). DSTU EN 10080:2009. Kyiv: Derzhspozhyvstardart Ukrayiny, 49 p. [In Ukrainian]Konstruktsiyi budynkiv i sporud. Betonni ta zalizobetonni konstruktsiyi. Osnovni polozhennya. [Structures of buildings and erections. Concrete and reinforced-concrete structures. Design rules]. (2011). DBN V. 2.6-98:2009. Kyiv: Minrehionbud Ukrayiny, 71p. [In Ukrainian].Konstruktsiyi budynkiv i sporud. Betonni ta zalizobetonni konstruktsiyi z vazhkoho betonu. Pravyla proektuvannya. [Structures of buildings and erections. Concrete and reinforced-concrete structures. Design rules]. (2011). DSTU B V.2.6.-156:2010. Kyiv: Minrehionbud Ukrayiny, 118 p. [In Ukrainian].Konstruktsiyi budynkiv i sporud. Betonni ta zalizobetonni konstruktsiyi. Zbirno-monolitni konstruktsiyi. Pravyla proektuvannya [Structures of buildings and erections. Concrete and reinforced-concrete structures. Prefabricated-monolithic structures. Design rules]. (2011). DSTU B 8.2.6-154:2010. Kyiv: Minrehionbud Ukrayiny. [In Ukrainian].Yevrokod 2. Proektuvannya zalizobetonnykh konstruktsiy. Chastyna 1-2. Zahalni polozhennya. Rozrakhunok konstruktsiy na vohnestiykist [Eurocode 2. Design of concrete structures. Part 1-2. General rules. Structural fire design]. (2014). DSTU-N B EN 1992-1-2:2012 (EN 1992-1-2:2004, IDT). Kyiv: Minrehionbud Ukrayiny, 129p. [In Ukrainian].Kharitonov Vik.A., Kharitonov V.A., & Haxhaiaj S. (2011). Sovremennyye tendentsii razvitiya armaturnogo prokata dlya nenapryazhennogo zhelezobetona [Modern tendencies of development of reinforcing rolled metal for unstressed reinforced concrete]. Stroymetall: Yevropa – Rossiya, 2011, 2, 8-20. [In Russian].Khamichonok V.V., Matveyev N.G., Mirochnik I.A. & Chinokalov Ye.V. (2019). Razrabotka tekhnologii proizvodstva armaturnogo prokata klassa A500 s kompleksom dopolnitelnykh svoystv po GOST 34028-2016 v usloviyakh AO YEVRAZ ZSMK [Development of technology for the production of A500 class reinforcing bars with a complex of additional properties in accordance with GOST 34028-2016 in the conditions of JSC EVRAZ ZSMK]. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii [Ferrous Metallurgy. Bulletin of Scientific, Technical and Economical Information], 2019, Vol. 75, 6, 711-717. [In Russian]. https://doi.org/10.32339/0135-5910-2019-6-711-717Zashchita stroitelnykh konstruktsiy ot korrozii. Aktualizirovannaya redaktsiya SNiP 2.03.11–85 (s Izmeneniyami № 1, 2). [Protection against corrosion of construction Updated edition of SNiP 2.03.11-85 (with Amendments 1, 2)]. (2012). SP 28.13330.2012, Moskva: Minregion Rossii. [In Russian].Zashchita betonnykh i zhelezobetonnykh konstruktsiy ot korrozii. Obshchiye tekhnicheskiye trebovaniya. [Structural concrete and reinforced concrete protection against corrosion. General technical requirements]. (2010). GOST 31384–2008. Moskva: Standartinform. [In Russian].Zashchita betonnykh i zhelezobetonnykh konstruktsiy ot korrozii. Metody ispytaniy. [Protection against corrosion of concrete and reinforced concrete constructions. Test methods]. (2010). GOST 31383–2008. Moskva: Standartinform. [In Russian].Konstruktsii stroitelnyye. Metody ispytaniy na ognestoykost. Nesushchiye i ograzhdayushchiye konstruktsii [Elements of budding constructions. Fire-resistance test methods. Loadbearing and separating constructions]. (1995). GOST 30247.1–94. Moskva: MNTKS. [In Russian].Mulin N.M. (1975). Sterzhnevaya armatura zhelezobetonnykh konstruktsiy [Reinforcement bars for reinforced concrete structures]. Moskva: Stroyizdat, 1975, 233. [In Russian].Kugushin A.A., Uzlov I.G. & Kalmykov V.V. et al. (1986). Vysokoprochnaya armaturnaya stal [High-strength reinforcing steel], Moskva: Metallurgiya, 1986, 272. [In Russian].Yevrokod 2: Proyektirovaniye zhelezobetonnykh konstruktsiy. Chast 1-1. Obshchiye pravila i pravila dlya zdaniy [Eurocode 2. Design of concrete structures. Part 1-1. General rules and regulations for buildings]. (2010). EN 1992-1-1:2004 (Ye). Minsk. Tekhnicheskiy kodeks ustanovivsheysya praktiki, 191p. [In Russian].Stali nerzhaveyushchiye. Chast 5. Tekhnicheskiye usloviya postavki prutkov, katanki, protyanutoy provoloki, profiley i izdeliy s uluchshennoy otdelkoy poverkhnosti iz korrozionnostoykikh staley dlya stroitelstva [Stainless steels. Part 5: Technical delivery conditions for bars, rods, wire, sections and bright products of corrosion resisting steels for construction purposes]. (2019). EN 10088-5:2009. Kyiv: DP «UkrNDNTS». [In Ukrainian].