Snigura Iryna Romanivna, Junior Researcher, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academic square Starodubova, 1, Dnipro, Ukraine, 49107; ORSID 0000-0001-5872-7403

Togobitskaya Daria Nikolaevna, Dr. Sci. (Engin.), Professor, Head of the Department, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: dntog@ukr.net, isi-ofhp@mail.ru ORCID 0000-0001-6413-4823

Piptyuk Vitaly Petrovich, PhD (Engin.), Senior Research Scientist, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail; piptyuk_vp@i.ua ORCID 0000-0002-2915-1756

Grekov Stanislav Viktorovich, Research Scientist, Head of Department, Iron and Steel Institute named after Z.I. Nekrasovof the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107;  e-mail;  GSV4321@i.ua, ORCID 0000-0003-2848-0999

Petrov Oleksandr Pilipovich, Researcher, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail:  alex.f.petrov@gmail.com, ORCID 0000-0001-7855-9267

Golovko Lyudmila Alexandrovna, PhD in Chemistry, Senior Researcher, Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; ORCID: 0000-0002-3872-5950

 

Physicochemical prerequisites for the development of complex relationships between the properties of metallurgical melts in order to predict the regularities of the distribution of elements during the finishing of steel on a ladle furnace

 

Summary. The aim of the work is to create a base of physical and chemical knowledge with blocks of operational analytical expressions that predict the complex properties of metal, slag melts and additives. The base is designed for a scientifically sound product of control actions for the purpose of directed formation of high-quality metal when bringing steel to the UCP. As a basis for describing the processes of interaction of phases in the work used the original method of physico-chemical modeling of the composition and properties of metallurgical melts, as well as experience in creating information and analytical systems for forecasting and controlling the smelting process. Models for forecasting the properties of steels and alloys for special purposes (chromium-nickel, iron-carbon steels of a wide range, aluminum, magnesium, heat-resistant nickel alloys) and ferroalloys of domestic production have been developed. High accuracy of forecast and stability of analytical expressions is obtained, which is confirmed by comparison with calculations on a software computer complex. The possibility of using interatomic interaction parameters to determine the activities of components in binary and multicomponent metal systems is shown. On the example of steel 09G2C, the structure of models for the distribution coefficients of elements, in particular Si and Mn, between the products of smelting during ladle processing was generated. The structural similarity of the models for determining the distribution coefficients of these elements is revealed, which is due to their proximity to the structure of clusters of one-component melts. The results of the work should be recommended for integration in ASNI and ASUTP of steel production in order to form a competitive end product.

Key words: metallurgical melts, parameters of interatomic interaction,    predictive models, distribution of elements, ladle furnace

 

References

Gasik M.I. & Lyakishev N.P. (2008). Fizikohimiya i tehnologiya elektroferrosplavov: Uchebnik [Physicochemistry and Technology of Electroferroalloys: Textbook]. Dnipropetrovsk: Sistemnyie tehnologi, 2008, 453 p. [In Russian].

Vihlevschuk V.A., Kharakhulakh V.S. & Brodskiy S.S. (2000). Kovshevaya dovodka stali [Ladle finishing of steel], Dnepropetrovsk: Sistemnyie tehnologii, 2000, 190 p. [In Russian].

Nikitin M.S. & Ryabova A.V. (2011). K voprosu ob otsenke stepeni usvoeniya i ravnomernosti raspredeleniya olova pri legirovanii stali [On the assessment of the degree of assimilation and uniformity of tin distribution during alloying of steel]. – Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta [Bulletin of the South Ural State University], 2011, 36, 26-29. [In Russian].

Zhuchkov V.I., Sheshukov O.Yu. & Lozovaya E.Yu. (2004). Sravnielnaya otsenka effektivnosti usvoeniya ferrosplavov pri vyiplavke stali [Comparative assessment of the efficiency of assimilation of ferroalloys in steelmaking]. Elektrometallurgiya [Electrometallurgy], 2004, 5, 9–11. [In Russian].

Prihodko E.V. (1995). Metallohimiya mnogokomponentnyih system [Metal chemistry of multicomponent systems]. Moskva: Metallurgiya, 1995, 320 p. [In Russian].

Babachenko A.I., Togobitskaya D.N., Kozachek A.S., Kononenko A.A., Knyish A.V. & Snigura I.R. (2016). Optimizatsiya himicheskogo sostava stali dlya zheleznodorozhnyih koles, obespechivayuschego stabilizatsiyu mehanicheskih i povyishenie ekspluatatsionnyih svoystv [Optimization of the chemical composition of steel for railway wheels, ensuring the stabilization of mechanical and improvement of operational properties]. Metallurgicheskaya i gornorudnaya promyishlennost [Metallurgical and mining industry], 2016, 2, 67–73. [In Russian].

Togobitskaya D.N., Piptyuk V.P., Petrov A.F., Grekov E.V. & Mirgorodskaya A.S. (2019). Prediction of Ferroalloy Properties for Expert Evaluation of the Efficiency of their Use During Addition to Steel in a Ladle Furnace Unit. Metallurgist, 2019, Vol. 62, (11-12), 1115-1122. https://doi.org/10.1007/s11015-019-00763-5

Piptyuk V.P., Togobitska D.M., Bayul K.V., Logozinskiy I.M., Levin B.A. & Petrov O.P. et al. (2018). Eksperimentalne doslidzhennya pidvischennya tehnologichnosti briketIv ferosilitsiyu dlya virobnitstva stali [Experimental study of increasing the manufacturability of ferrosilicon briquettes for steel production]. Suchasni problemi metalurgiyi. Naukovi visti [Modern problems of metallurgy. Scientific news], Dnipro, 2018, Vol. 1, 21, 50-55. [in Ukrainian]. https://doi.org/10.34185/1991-7848.2018.01.09

Togobitskaya D.N., Piptyuk V.P., Petrov A.F., Grekov S.V., Snigura I.R. & Lihachev Yu.M. et al. (2017). Bazyi dannyih i modeli dlya ekspertnoy otsenki effektivnosti ispolzovaniya ferrosplavov pri proizvodstve stali [Databases and models for expert assessment of the efficiency of using ferroalloys in steel production]. Fundamentalnyie i prikladnyie problemyi chernoy metallurgii [Fundamental and applied problems of ferrous metallurgy], 2017, 31, 150–165. [In Russian].

Togobitskaya D.N., Shaper M., Gridin O. & Snigura I.R. (2018). Kompyuternoe modelirovanie temperatur plavleniya i kristallizatsii splavov spetsialnogo naznacheniya [Computer modeling of temperature melting and crystallization of special-purpose alloys]. Stal [Steel], 2018, 6, 11–15. [In Russian].

Carlson K.D. & Beckermann C. (2012). Determination of solid fraction–temperature relation and latent heat using full scale casting experiments: application to corrosion resistant steels and nickel based alloys. International Journal of Cast Metals Research, 25:2, 75-92. https://doi.org/10.1179/1743133611Y.0000000023