Razdobreev Valery Guriyovych, PhD (Engin.), Senior Researcher, Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: v_razdobreev@mail.ru
Palamar Dmitry Grigorovich, Junior Researcher (Engin.), , Iron and Steel Institute named after Z.I. Nekrasov of the NAS of Ukraine, Academican Starodubova square, 1, Dnipro, Ukraine, 49107; e-mail: v_razdobreev@mail.ru

 

Investigation of the influence of hot asymmetric long products on the
formation of the microstructure, mechanical properties and service
characteristics of finished products

Summary. The aim of the work is to study the influence of the process of
hot asymmetric rolling on the structural state, mechanical properties and
operational characteristics of long products of simple form from ordinary
carbon steel. To simulate the process of asymmetric high-quality rolling, the
mathematical model previously developed in the ISI added the possibility of
taking into account cases of rolling in a pair of rolls of different diameters,
rolling in a pair of rolls of different materials, rolling with one drive and one
non-drive rolls, rolling at different speeds in a pair of rolls and other. The
calculations showed a reduction in rolling force to 10 % with an asymmetric
rolling process compared to the traditional rolling process. The study of the
features of the process of hot asymmetric rolling (shear rolling) compared with
the traditional rolling process was carried out under industrial conditions in the
production of a 12×12 mm square profile from ordinary low-carbon steel St3sp.
It was found that the average values of HRB, σВ, and σТ in the studied samples
practically do not differ, and the average values of δ5 are higher by 8 % (abs.)
or ~ 27 % (rel.) In samples that were rolled using the asymmetric rolling
technology than in samples that were rolled using traditional rolling
technology. The estimation of dislocation density by the X-ray diffraction
method showed that during hot asymmetric rolling, the dislocation density is
reduced by ~ 46% due to the active flow of in-situ polygonization and
recrystallization processes during deformation. In this case, the average values
of the microfractures of the crystalline lattice of ferrite are 21% lower in the
samples obtained by the method of asymmetric rolling than in the samples
obtained by traditional rolling. For the first time, a decrease in the total
atmospheric corrosion rate was found in samples that were rolled using
154
«Фундаментальные и прикладные проблемы черной металлургии. – 2019. – Вып.33
«Fundamental and applied problems of ferrous metallurgy». – 2019. – Collection 33
ISSN 2522-9117 «Fundamental’nye i prikladnye problemy černoj metallurgii». – 2019. – Vypusk 33
asymmetric rolling technology (0.39 g/m2xh) compared to samples that were
rolled using traditional rolling technology (0.445 g/m2xh).
Keywords: asymmetric hot rolling, traditional rolling, microhardness,
hardness, mechanical properties, atmospheric corrosion rate
References
1. Grudev A.P. Teoriya prokatki: Uchebnik dlya vuzov. – M.: Metallurgiya,
1988. – 240 s.
2. Vasil’yev M.A., Prokopenko G.I., Filatova V.S. Nanokristallizatsiya
metallicheskikh poverkhnostey metodami intensivnoy plasticheskoy
deformatsii. Uspekhi fiz. met. – 2004. – T.5. – №3. – S. 345-399.
3. Lyakishev N.P., Alymov M.I. Polucheniye i fiziko-mekhanicheskiye
svoystva ob”yemnykh nanokristallicheskikh materialov. – M.: Izd-tvo
ELIZ, 2007. – 148 s.
4. Valiyev R.Z., Aleksandrov I.V. Nanostrukturnyye materialy, poluchennyye
intensivnoy plasticheskoy deformatsiyey – M.: Logos, 2000. – 272 s.
5. Lesyuk Ye.A. Tekhnologiya polucheniya nanokristallicheskoy struktury v
poverkhnostnykh sloyakh massivnykh detaley iz konstruktsionnykh i
instrumental’nykh staley. Tekhnologiya metallov. – 2008. – №7. – S. 29-35.
6. Zabelin S.F. Tekhnologii poverkhnostnoy nanokristallizatsii metallov i
splavov. [S.F. Zabelin, A.A. Vasil’yev, A.A. Dorozhkov, A.A. Feofanov ].
Uchenyye zapiski ZabGGPU. – 2015. – №2. – S. 36-44.
7. Nikitenko O.A. Formirovaniye ul’tramelkozernistoy struktury uglerodistoy
stali v protsesse goryachey plasticheskoy deformatsii. [O.A. Nikitenko,
Yu.Yu. Yefimova, M.S. Zherebtsov, Ye.S. Selivanova]. Innovatsionnyye
tekhnologii v mashinostroyenii i materialovedenii: sb. tezisov 2-oy
nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiyem, Perm’,
29 sen.-3 okt., 2014. – S. 96-100.
8. Kawalek Anna, Henrik Dyja Analiz izmeneniy sil i momentov
nesimmetrichnoy ploskoy prokatki. Vestnik MGTU. – 2013. – № 5. – S.28-
33.
9. Nayzabekov A.B. O realizatsii intensivnykh plasticheskikh deformatsiy pri
prokatke v kalibrakh. [A.B. Nayzabekov, B.B. Bykhin, K.A. Nogayev,
M.B. Bykhin]. Sci. and world. – 2014. – №10. – Ch. 1. – S. 45-49.
10. Mekhtiev A.D. Vliyaniye nesimmetrichnoy prokatki v konicheskikh
valkakh na mikrostrukturu nizkouglerodistoy stali. [A.D. Mekhtiev,
E.M. Azbanbaev, A.Z. Sagulov et al.]. Metalurgija (Zagreb). – 2015. –
Vol. 54. – №4. – S. 623-626.
11. Pat. 25313337. Rossiyskaya Federatsiya, MPK V21V 1.00 (2006.01).
Sposob asimmetrichnoy prokatki metalla. [A.M. Pesin, A.P. Tkachenko,
D.O. Pustovoytov, N.M. Lokotunina, M.A. Biryukov, N.A. Gorkin],
155
«Фундаментальные и прикладные проблемы черной металлургии. – 2019. – Вып.33
«Fundamental and applied problems of ferrous metallurgy». – 2019. – Collection 33
ISSN 2522-9117 «Fundamental’nye i prikladnye problemy černoj metallurgii». – 2019. – Vypusk 33
zayavitel’ i patentoobladatel’ ChermetInformSistemy. – №2013111708/02;
zayavl. 15.03.2013; opubl. 20.10.2014.
12. Pat. 2518028. Rossiyskaya Federatsiya, MPK V21V 13/10 (2006.01).
Rabochaya klet’ stana dlya prokatki profiley v kalibre. [A.M. Pesin,
A.P. Tkachenko, D.O. Pustovoytov, N.M. Lokotunina, M.A. Biryukov,
V.V. Kurban], zayavitel’ i patentoobladatel’ ChermetInformSistemy. –
№2013104893/02; zayavl. 05.02.2013; opubl. 10.06.2014.
13. Pat. 2518358. Rossiyskaya Federatsiya, MPK V21V 13/10 (2006.01).
Rabochaya klet’ stana dlya prokatki profiley v kalibre. [A.M. Pesin,
A.P. Tkachenko, D.O. Pustovoytov, N.M. Lokotunina, M.A. Biryukov,
V.V. Kurban], zayavitel’ i patentoobladatel’ ChermetInformSistemy. –
№2013104846/02; zayavl. 05.02.2013; opubl. 10.06.2014.
14. Liu Gang. Nanokristallizatsiya poverkhnosti kremnistoy stali v zavisimosti
ot parametrov nesimmetrichnoy prokatki. [Liu Gang, Ma Ye,
Zhang Ruijun, Wang Xiaolan et al.] Acta met. sin. – 2014. – Vol. 50. – №9.
– PP. 1071-1077.
15. Sklyar V.O. Innovatsionnyye i resursosberegayushchiye tekhnologii v
metallurgii. Uchebnoye posobiye. – Donetsk: DonNTU, 2014. – 224 s.
16. Pokrytiya metallicheskiye i nemetallicheskiye. Metody uskorennykh
korrozionnykh ispytaniy: GOST 9.308-85. – M.: Izd-tvo standartov, 1986. –
20 s.
17. Yedinaya sistema zashchity ot korrozii i stareniya. Metally, splavy,
pokrytiya metallicheskiye. Metody udaleniya produktov korrozii posle
korrozionnykh ispytaniy: GOST 9.907-2007 (ISO 8407:1991). -M.:
STANDARTINFORM, 2008. – 19 s.
18. Zhuchkov S.M., Lokhmatov A.P., Kulakov L.V.. Optimizatsiya raskhoda
energii pri nepreryvnoy sortovoy prokatke. – K.: Naukova dumka, 2008. –
191 s.
19. Zhuchkov S.M., Kulakov L.V., Lokhmatov A.P. Upravleniye temperaturnym
rezhimom nepreryvnoy sortovoy prokatki (Teoreticheskiye i
tekhnologicheskiye osnovy). – M.: Teplotekhnik, 2008. – 144 s.
20. Pashinskaya Ye.G., Zavdoveyev A.V. Primeneniye prokatki so sdvigom i
traditsionnogo volocheniya dlya formirovaniya struktury i svoystv
malouglerodistykh staley. Fizika i tekhnika vysokikh davleniy. – 2012. –
T.22. – №3. – S. 1-12.
21. Palamar D.H. Rozrobka sproshchenoho metodu otsinky deformatsiynoho
opratsyuvannya tsentralʹnykh zon pererizu rozkatu z bezperervnolytoyi
zahotovky pry prokattsi u kalibrakh. [D.H. Palamar, S.O. Vorobey,
S.V. Yershov, V.H. Razdobryeyev, I.Yu. Prykhodʹko]. Zb. naukovykh
pratsʹ Dniprovsʹkoho Derzhavnoho Tekhnichnoho Universytetu.
Kamʼyansʹke: DDTU, 2018. – S. 74-83.
156
«Фундаментальные и прикладные проблемы черной металлургии. – 2019. – Вып.33
«Fundamental and applied problems of ferrous metallurgy». – 2019. – Collection 33
ISSN 2522-9117 «Fundamental’nye i prikladnye problemy černoj metallurgii». – 2019. – Vypusk 33
22. Gridnev V.N., Gavrilyuk V.G., Meshkov Yu.Ya. Prochnost’ i plastichnost’
kholodnodeformirovannoy stali. – K.: Naukova dumka, 1974. – 232 s.
23. Kaybyshev O.A., Utyashev F.Z. Sverkhplastichnost’, izmel’cheniye
mikrostruktury i obrabotka trudnodeformiruyemykh splavov. – M.: Nauka,
2002. – 438 s.
24. Trefilov V.I., Moiseyev V.F., Pechkovskiy E.P. i dr. Deformatsionnoye
uprochneniye i razrusheniye polikristallicheskikh materialov – K.: Naukova
Dumka, 1989. – 256 s.
25. Kaybyshev O.A. Nauchnyye osnovy, dostizheniya i perspektivy
sverkhplasticheskoy deformatsii. – Ufa: Gilem, 2000. – 150 s.
26. Dobatkin S.V., Kaputkina L.M. Karty strukturnykh sostoyaniy dlya
optimizatsii rezhimov goryachey deformatsii staley. – Fizika metallov i
metallovedeniye. – 2001. – T. 91. – № 1. – S. 79-89.
27. Kostina M.V., Dymov A.V., Blinov V.M. Vliyaniye plasticheskoy
deformatsii na strukturu i svoystva vysokoazotistykh splavov sistemy FeCr. Metallovedeniye i termicheskaya obrabotka metallov. – 2002. – № 1. –
S. 1-7.
28. Ahmonri A., Torizuka S., Nagai K. Evolution of ultrafine-grained ferrite
structure through multi-pass warm caliber rolling. Jornal of the Iron and
Steel Institute of Japan. – 2003. – Vol. 89. – № 7 – P. 781-788.