DOI: 10.52150/2522-9117-2022-36-455-465

Gubynskyi Mykhailo Volodymyrovych, D. Sc. (Tech.), Professor, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-3770-4397

Sibir Artem Vitaliyovych, Ph. D. (Tech.), Associate Professor, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-9974-0636

Fedorov Sergey Sergeyevich, D.S c. (Tech.), Professor, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-5409-882X

Merkulov Oleksii Yevhenovych, Dr. Sc. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-7867-0659

Gubynskyi Semen Mikhailovich, Researcher, Ukrainian State University of Science and Technologies, Lazariana Str., 2, Ukraine, Dnipro, 49010. ORCID: 0000-0002-4598-5136

Koval Serhii Valeriiovych, Ph. D. Student, Ukrainian State University of Science and Technologies, Lazariana Str., 2, Ukraine, Dnipro, 49010. ORCID: 0000-0002-4115-9865

Forys Oleksii Mykhailovych, Ph. D. Student, Ukrainian State University of Science and Technologies, Lazariana Str., 2, Ukraine, Dnipro, 49010. ORCID: 0000-0002-9524-2381

EVALUATION OF THE REDUCTION OF GREENHOUSE GAS EMISSIONS WHEN PRODUCING ARTIFICIAL GRAPHITE IN ELECTROTHERMAL FLUIDIZED BED

Summary. One of the main global trends in the development of the world economy is its decarbonization with the fulfillment of obligations to reduce greenhouse gas emissions. The processes of obtaining high-purity graphitized materials and ferrous metallurgy have significant consumption of energy carriers and, accordingly, emissions of greenhouse gases. Therefore, the development and implementation of innovative energy-saving technologies based on the electrothermal fluidized bed will allow to solve the emission of greenhouse gases during the production of electrode products. The purpose of the work is to determine the environmental efficiency of the implementation of innovative technology based on electrothermal fluidized bed in comparison with existing ones. The basis of the research methodology is the calculation of greenhouse gas emissions using specific emission rates during the production of electrical energy and burning of natural gas. The work proposes a methodology that takes into account the structure of electricity and fuel production in Ukraine, their types and quality. Technological costs of electricity during its transportation from stations to the consumer, specific fuel costs for electricity production are covered. Calculations were made for four variants of the technological process, which are implemented at PrJSC «Ukrgrafit» and include the stage of anthracite calcination in rotary furnaces or electrocalciners, the stage of graphitization in Achenson and Kastner furnaces. Two options of technologies with an electrothermal fluidized bed are analyzed in the work. The results of the calculations show that the proposed technology for obtaining finely dispersed artificial graphite based on anthracite from the Donetsk deposit significantly reduces greenhouse gas emissions by 2-3.5 times compared to the existing technologies of PrJSC «Ukrgrafit». Specific emissions of greenhouse gases decrease from 2500-2600 kg of CO2/t to 390-780 kg of CO2/t.

Keywords: greenhouse gases, graphitized materials, electrothermal fluidized bed, specific emissions.

DOI: https://doi.org/10.52150/2522-9117-2022-36-455-465

Reference for citation: Otsinka zmenshennia vykydiv parnykovykh haziv pry otrymanni shtuchnoho hrafitu v elektrotermichnomu kypliachomu shari [Evaluation of the reduction of greenhouse gas emissions when producing artificial graphite in electrothermal fluidized bed] / M. V. Gubynskyi, A. V. Sibir, S. S. Fedorov, O. Ye. Merkulov, S. M. Gubynskyi, S. V. Koval, O. M. Forys // Fundamental and applied problems of ferrous metallurgy. 2022. Collection 36. P. 455-465. [In Ukrainian]. https://doi.org/10.52150/2522-9117-2022-36-455-465

References

  1. Fialkov, A. (1979). Uglegrafitovye materialy [Carbon graphite materials].
  2. Petrov, B. (2006). Enerosberezhenie pri proizvodstve elektrodnogo termoantracita [Energy saving in the production of electrode thermoanthracite]. Ekotekhnologіya
  3. Gubynskyi, M., Fedorov, S., & Livitan, N. (2012). Pechi dlya proizvodstva vysokochistyh uglerodnyh materialov [Furnaces for the production of high-purity carbon materials]. Teoriya i praktika teplovyh processov v metallurgii [Theory and practice of thermal processes in metallurgy] (p. 79–83). UrFU
  4. Schobert, H. (2013). Chemistry of fossil fuels and biofuels. Cambridge University Press
  5. Leleka, S., Panov, E., Karavackij, A., Pulinec, I., CHirka, T., & Lazarev, T. (2013). Teploelektricheskoe sostoyanie pechej grafitirovaniya Achensona [The thermoelectric state of Achenson graphitizing furnaces]. Rntd,-NTUU «KPI»..[ In Russian].
  6. Sybir, A., Hubynskyi, M., Fedorov, S., Hubynskyi, S., & Hohotsi, O. (2020). Pechi z elektrotermichnym kypliachym sharom [Pechi with electrothermal kypliachym sharom.]. Metalurhiina ta hirnychorudna promyslovist [Metallurgical and mining industry], (2), 42–61
  7. Gupta, С., & Sathiyamoorthy, S. (1999). Fluid bed technology in materials processing. CRC Press.
  8. Zak, M., Harrison, W., & Doninger, J. (2005). Method and apparatus for heat treatment of partyculats in an electrothermal fluidized bed furnace and resultant products (Patent No. WO 2005/028978 A1).
  9. Sybir, A., Hubynskyi, M., Balalaiev, O., & Burchak, O. (2022). Effect of anthracite heat treatment parameters during shock heating on the properties of carbon materials. Voprosy khimii i khimicheskoi tekhnologi, (5), 94–101.
  10. Eggleston, H., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). Gas In ven to ries Programme (Energy. IPCC). IGES
  11. Volchyn, I., & Haponych, L. (2019). Vykydy parnykovykh haziv na ukrainskykh teplovykh elektrostantsiiakh. [Greenhouse gas emissions at Ukrainian thermal power plants] Enerhotekhnolohyy y resursosberezhenye [Energy technology and resource saving], (4), 3–12
  12. Enerhetychna stratehiia Ukrainy na period do 2030 r., Stratehiia Kabinetu Ministriv Ukrainy [Energy Strategy of Ukraine until 2030, Strategy of the Cabinet of Ministers of Ukraine]. (2017). https://zakon.rada.gov.ua/laws/show/n0002120-13#Text
  13. Teplovoy raschet kotelnyih agregatov (normativnyiy metod) [Thermal calculation of boiler units (normative method)]. (1998)
  14. Guidelines for National Greenhouse Gas Inventories (IPCC). (2006).
  15. Richnyi zvit z monitorynhu proektu SV “skorochennia vykydiv parnykovykh haziv vnaslidokh zakhodiv z pidvyshchennia enerhoefektyvnosti ta utylizatsii vtorynnoho tepla na vat “ukrhrafit” [Annual monitoring report on the project “Reduction of greenhouse gas emissions due to measures to improve energy efficiency and utilization of waste heat per watt “ukrgraphite”](za period 1 sichnia 2008 roku po 30 lystopada 2012 roku, Versiia 2.0,) [for the period from 1 January 2008 to 30 November 2012, Version 2.0]. (2012)

Фундаментальные и прикладные проблемы черной металлургии
Logo