DOI: 10.52150/2522-9117-2022-36-152-171
Shevchenko Anatolii Pylypovych, D. Sc. (Tech.), Professor, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-0867-6825. E-mail: ovoch-isi@outlook.com
Kislyakov Volodymyr Hennadiiovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0002-1775-5050
Dvoskin Borys Vulfovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-2891-7833
Manachyn Ivan Oleksandrovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0001-9795-6751
Shevchenko Serhiy Anatoliyovych, Ph. D. (Tech.), Senior Researcher, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Academican Starodubova Square, 1, Dnipro, Ukraine, 49107. ORCID: 0000-0003-1521-9665
Zotov Dmytro Serhiiovych, Ph. D. (Tech.), Metinvest Holding LLC, Laboratory Lane, 12, Kyiv, 03150, Ukraine. E-mail: dmitriy.zotov@metinvestholding.com
COMMON FACTORS OF CHANGES IN SLAG COMPOSITION AND SULFUR CONTENT IN CAST IRON IN THE TECHNOLOGICAL CHAIN BLAST FURNACE – CAST IRON DESULFURIZATION COMPLEX– CONVERTER
Summary. This paper analyzes the change in the sulfur content of cast iron and the composition of slag in the technological chain of BF – CIDC – OCS. Based on the results of the conducted research, technical solutions and technological techniques aimed at eliminating cast iron resulfurization have been developed and recommended. The analysis of the structure of the slag “beads” by the methods of optical microscopy and scanning electron microscopy was performed, which showed that they have a ferrite-graphite structure of the pre-eutectic or eutectic type with non-metallic inclusions in the form of manganese and iron sulfides. Spot probe scanning of bucket slag samples showed that in the slag phase, along with CaO∙SiO2∙Al2O3 type systems with different ratios of components containing 0.2–3.5% sulfur, CaxSiyAlz type systems containing up to 1% sulfur were found; in “beads” the sulfur content varies no more than 0.1- 0.85% and is in the form of sulfides of the (Fe, Mn)S type, mainly MnS, and in the non-metallic inclusions of “beads” the sulfur content is no more than 15- 30%. The conducted studies of the composition of dry, friable and liquid glassy ladle slags after desulfurization showed that they do not change the phase composition, but unlike the initial ladle slags, in the slag phase of such slags there are mainly CaO∙SiO2∙Al2O3∙MgO systems enriched with magnesium oxides, with a variable ratio of components. At the same time, sulfur in the slag phase of dry slags is mainly in the form of complexes (Ca, Mn, Mg, Al, Si)S, and in the slag phase of liquid slags it is mainly in the form of MnS and less often in the form of complexes (Ca, Mn,)S. According to the results of industrial experiments carried out at a number of enterprises in Ukraine and China, it was established that in order to limit the introduction of sulfur to converter steel with slag at the level of ≤0.002%, the remaining ladle slag after desulfurization should not exceed 0.5- 0.7 kg/t of cast iron. The analysis of the results obtained in the series of experimental melting in 300-ton converters with the use of scraps showed that the arrival of sulfur in the steel in all five treatments was lower than the calculated (according to the balance) by 0.00002 – 0.00165%.
Key words: desulfurization, cast iron, resulfurization, ladle, slag, sulfur distribution, mixer.
DOI: https://doi.org/10.52150/2522-9117-2022-36-152-171
For citation: Zakonomirnosti zmin skladu shlaku i vmistu sirky v chavuni u tekhnolohichnomu lantsiuzi “domenna pich – kompleks desulfuratsii chavunu– konverter” [Common factors of changes in slag composition and sulfur content in cast iron in the technological chain blast furnace – cast iron desulfurization complex– converter] / Shevchenko A.P., Kislyakov V.H., Dvoskin B.V, Manachin I.O., Shevchenko S.A., Zotov D.S. // Fundamental and applied problems of ferrous metallurgy. 2022. Collection 36. P. 152-171. [In Ukrainian]. https://doi.org/10.52150/2522-9117-2022-36-152-171
References
- Kulikov, I. S. (1961). Desul’furaciya chuguna [Desulphurization of cast iron]. Metallurgizdat
- Volovik, G. A. (1961). Vnedomennaya obrabotka chuguna [Out-of-furnace processing of cast iron]. Gostekhizdat USSR
- Sрevchenko, A. F., Bol’shakov, V. I., & Bashmakov, A. M. (2017). Tekhnologiya i oborudovanie desul’furacii chuguna magniem v bol’shegruznyh kovshah [Technology and equipment for iron desulfurization with magnesium in heavy-duty ladles]. Naukova dumka
- Razrabotka tekhnologicheskih reshenij i predlozhenij na postavku tekhnologii desul’furacii zhidkogo chuguna granulirovannym (zernistym) magniem v zalivochnyh kovshah miksernogo otdeleniya No. 1 konverternogo cekha metallurgicheskogo kombinata PAO “Arselormittal Krivoj rog [Development of technological solutions and proposals for the supply of technology for the desulfurization of liquid iron with granular (granular) magnesium in pouring ladles of the mixer department No. 1 of the converter shop of the metallurgical plant of PJSC Arcelormittal Kryvyi Rih]. (2014). Otchet po NIR. Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine. Number of state registration 0116U003769
- Tovarovskij, I. G., & Merkulov, A. E. (2017). Normativnaya ocenka vliyaniya parametrov domennoj plavki na raskhod koksa i proizvoditel’nost’. Metallurgiya chuguna – vyzovy XXI veka. [Regulatory assessment of the influence of blast furnace parameters on coke consumption and productivity. Iron metallurgy – challenges of the XXI century]. In Trudy VIII Mezhdunarodnogo kongressa domenshchikov. (pp. 111-113). Izdatel’skij dom “Kodeks”
- Tkach, N. T., Shevchenko, A. F., Kostenko, D. V., & Lyndya, P. S. (2004). Osobennosti shlakoobrazovaniya v kovshah s zhidkim chugunom. Fundamental’nye i prikladnye problemy chernoj metallurgii, 8, 168-175
- Kurilova, L. P., Bulahtin, A. S., Kislyakov, V. G., Rudenko, A. L., & Tkach, N. T. (2010). O resul’furacii chuguna ot vypuska iz domennoj pechi do sliva v konverter [On the resulfurization of pig iron from tapping from a blast furnace to draining into a converter]. Fundamental’nye i prikladnye problemy chernoj metallurgii, 22, 96-105
- Vergun, A. S., Nesterenko, A. M., Kislyakov, V. G. et al. (2009). Osobennosti struktury metallicheskoj i nemetallicheskoj faz shlaka, formiruyushchegosya v kovshe v processe desul’furacii chuguna magniem [Features of the structure of the metallic and non-metallic phases of the slag formed in the ladle during the desulfurization of cast iron with magnesium]. Teoriya i praktika metallurgii, (5-6), 86-90
- Kislyakov, V. G. (2013). Sovershenstvovanie tekhnologicheskih osnov podgotovki chuguna k vyplavke nizkosernistoj kislorodno-konverternoj stali [Improving the technological bases for the preparation of cast iron for the smelting of low-sulfur oxygen-converter steel]. Diss. kand. tekh. nauk. Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine
- Rudenko, A. L. (2014). Analiz zakonomernostej mezhfaznogo raspredeleniya sery pri inzhekcionnoj obrabotke chuguna magniem [The analysis of patterns of interphase sulfur distribution in the injection treatment of iron with magnesium]. Vuz. Metallurgicheskie tekhnologii, (8), 13-18
- Rudenko, A. L. (2016). Kinetika mezhfaznogo perekhoda sery v processe kovshevogo rafinirovaniya chuguna magniem [Kinetics of interfacial transition of sulfur during ladle refining of iron by magnesium]. Vuz. Fiziko-himicheskie osnovy metallurgicheskih processov, 59(12), 896-902
- Frank Nicolaas Hermanus Schrama, Elisabeth Maria Beunder, Bart Van den Berg Yongxiang Yang, & Rob Boom. Suiphur removal in ironmaking and oxygen steelmaking. ironmaking & steelmaking. 2017. 44 (5), 333-343. https://doi.org/10.1080/03019233.2017.1303914